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A second-order accurate, highly efficient method is developed for simulating
unsteady three-dimensional incompressible flows in complex geometries. This is
achieved by using boundary body forces that allow the imposition of the boundary
conditions on a given surface not coinciding with the computational grid. The gov-
erning equations, therefore, can be discretized and solved on a regular mesh thus
retaining the advantages and the efficiency of the standard solution procedures. Two
different forcings are tested showing that while the quality of the results is essentially
the same in both cases, the efficiency of the calculation strongly depends on the par-
ticular expression. A major issue is the interpolation of the forcing over the grid that
determines the accuracy of the scheme; this ranges from zeroth-order for the most
commonly used interpolations up to second-order for anad hocvelocity interpola-
tion. The present scheme has been used to simulate several flows whose results have
been validated by experiments and other results available in the literature. Finally
in the last example we show the flow inside an IC piston/cylinder assembly at high
Reynolds number; to our knowledge this is the first example in which the immersed
boundary technique is applied to a full three-dimensional complex flow with mov-
ing boundaries and with a Reynolds number high enough to require a subgrid-scale
turbulence model. c© 2000 Academic Press
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1. INTRODUCTION

The continuous growth of computer power strongly encourages engineers to rely on
computational fluid dynamics for the design and testing of new technological solutions.
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Numerical simulations allow analysis of phenomena without resorting to expensive proto-
types and difficult experimental measurements. On the other hand, while simple geometries
discretized by regular grids are efficiently handled by currently available codes and hard-
ware, complex geometry flows requiring body-fitted curvilinear or unstructured meshes are
still challenging problems for todays computers.

In addition, in most industrial applications, geometrical complexity is combined with
moving boundaries and high Reynolds numbers which considerably increase the computa-
tional difficulties since they require, respectively, regeneration or deformation of the grid
and turbulence modeling. As a result, engineering flow simulations have large computa-
tional overhead and low accuracy owing to a large number of operations per node and high
storage requirements in combination with low-order dissipative spatial discretization. Given
the finite memory and speed of computers, these simulations are very expensive and time
consuming, with discretizations that are generally limited to a maximum of 1003 nodes.

In view of these difficulties it is clear that an alternative numerical procedure that can
cope with the flow complexity but at the same time retain the accuracy and high efficiency
of the simulations performed on fixed regular grids would represent a significant advance
in the study of industrial flows.

One possibility for the solution of this problem is the introduction of a body-force field
f such that a desired velocity distributionV can be assigned over a boundaryS. In other
words, we can add to the Navier–Stokes equations the body-forcef and solve foru from

∂u
∂t
+∇(uu) = −∇ p+ ν∇2u+ f, ∇ · u = 0. (1)

In principle there are no restrictions for the velocity distributionV and for the shape and
motion of S; therefore a wide variety of boundary conditions can be imposed. The main
advantage of this approach is thatf can be prescribed on a regular mesh (Fig. 1) so that the
accuracy and efficiency of the solution procedure on simple grids are maintained.

Indeed this idea is not new since it has already been pursued by many researchers in the last
three decades. Peskin [1, 2] reports at the beginning of the seventies simulations of the blood
flow in the mitral valve and in the heart assuming a very low Reynolds number and two-
dimensional flow. Three-dimensional heart flows were considered successively by McQueen
and Peskin [3, 4] that included also the contractile and elastic nature of the boundary. In
the above papers, the motion of the boundary was determined by the flow and only the
forces occurring between boundary elements were known. Within this framework, solid
boundaries were modeled by elements linked by very rigid springs even if the computation

FIG. 1. Sketch of the immersed boundary.
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of the force system remained as complex as in the case of elastic boundaries. In contrast
if the boundary configuration is known the computation off becomes much simpler since
for every boundary element only local information is needed instead of the complete force
distribution over the boundary.

Accordingly, Briscolini and Santangelo [5] used an immersed boundary approach (re-
ferred to as the mask method) to compute the unsteady two-dimensional flow around circular
and square cylinders at Reynolds numbers up to 1000. Goldsteinet al. [6] considered the
two-dimensional startup flow around a circular cylinder and three-dimensional plane, and
ribbed-turbulent channel flow. In the last two papers the immersed boundary technique
was combined with spectral methods and spurious oscillations at the boundary appeared
if the forcing was not spread over several (3–4) gridpoints across the boundary. Saiki and
Biringen [7] used the forcing of [6] to compute the flow around steady and rotating cir-
cular cylinders using fourth-order central finite-difference approximations. Indeed the use
of finite differences avoided the appearance of spurious flow oscillations at the boundary
even if also in that case the forcing was spread across the boundary using a procedure
that the authors refer to as “first-order accurate” similar to the delta-function of Peskin [1].
The main drawback of the forcing introduced in [6] is that it contains two free constants
that need to be tuned according to the frequencies of the flow (see Subsection 2.1) and the
higher the magnitude of the constants the stiffer the equations become. This implies that
for strongly unsteady flows the time step size must be reduced to small values thus making
the application of the method expensive. Even with this drawback, however, the method is
always more convenient than the classic body-fitted mesh approach and it has been recently
used for the simulation of three-dimensional flows by Goldsteinet al. [8], Goldstein and
Tuan [9], Saiki and Biringen [10], and Arthurset al. [11].

Recently Mohd-Yusof [12] derived an alternative formulation of the forcing that does
not affect the stability of the discrete-time equations. In addition, in this case there are
no free constants, making the derivation off flow independent. In [12] the new forcing
was combined with B-splines to compute the laminar flow over a three-dimensional ribbed
channel, showing substantial improvements with respect to the previous formulations. This
discrete-time forcing scheme was originally developed in a spectral context and has also
been successfully applied to flows around cylinders and spheres, at moderate Re.

In the present paper the forcings of [6, 12] are both implemented in a second-order
finite-difference scheme with the aim of comparing their accuracy and efficiency. It is
shown that while both methods give essentially the same results, the latter is substantially
more efficient making it suitable for the simulation of complex three-dimensional flows.
This remains true even after the first method is partially modified to make the time step
limitation less restrictive.

An adapted version of the forcing of Mohd-Yusof [12] has been applied to the simula-
tion of: (a) the vortex ring formation from a curvilinear nozzle, (b) the axisymmetric and
three-dimensional flow around a sphere, and (c) the three-dimensional turbulent flow inside
a motored IC piston/cylinder assembly. For the first flow anad hocexperiment has been
performed in order to validate the method thus proving the reliability of the results. In the
second case we wanted to investigate the capability of the present approach to capture sep-
aration phenomena over a smooth surface even if the boundary of the sphere was mimicked
over a rectangular mesh. Finally the results of the third flow were validated by available
experiments in the literature and, to our knowledge, this is the first example of an immersed
boundary simulation with an LES turbulence model.
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2. FORCING METHODS

We can now specify the analytic expression of the force densityf. Let us definef(xs, t)
as the force acting on the element of mimicked boundary whose position at timet is xs.
Since the force is dependent on the fluid velocity, which in general is unsteady, and the
boundary itself could move, it turns out that bothf andxs are functions of time. It must be
noted that the location ofxs generally is not coincident with the position of the solution
variables on the grid (in particular this never happens in the present case where a staggered
grid is used) therefore the forcing must be interpolated in the nodes where unknowns are
located. In the next two subsections we will specify the forcing disregarding the problem
of the interpolation. Instead, Subsection 2.3 will be devoted to the interpolation procedure
and its influence on the accuracy of the scheme.

2.1. Feedback forcing.According to the papers by Goldsteinet al. [6] and Saiki and
Biringen [7] the forcingf(xs, t) can assume the expression

f(xs, t) = α f

∫ t

0
[u(xs, t

′)− V(xs, t
′)] dt′ + β f [u(xs, t)− V(xs, t)]. (2)

α f and β f are negativeconstants whose dimensions are, respectively, 1/T2 and 1/T .
V(xs, t) is the velocity of the boundary that, through its space and time dependence, might
mimic also deformable moving bodies. The above quantity is a feedback to the velocity
differenceu(xs, t)−V(xs, t) and behaves in such a way to enforceu=V on the immersed
boundary. In fact the first term of Eq. (2) will decrease in time, in the sense that it becomes
more negative as the velocity difference increases thus tending to annihilate any difference
betweenu andV. The second term, on the other hand, can be interpreted as the resistance
opposed by the surface element to assume a velocityu different fromV.

An intuitive argument for understanding the action of the above forcing is the following:
if from Eq. (1) we retain only the first term on the left hand side and the last term on the
right hand side we have (in the case ofV = 0 or V constant in time)

dq
dt
≈ f = α f

∫ t

0
q dt′ + β f q, (3)

with q= u−V. Equation (3) represents a simple damped oscillator with frequency
(1/2π)

√|α f | and damping coefficient−β f /(2
√|α f |). This implies that asu on the bound-

ary becomes different fromV the forcingf “brings” u back toV. In an unsteady flow the mag-
nitude ofα f must be large enough so that the restoring force can react with a frequency which
is bigger than any frequency in the flow. Unfortunately the value of the constants is flow de-
pendent and, even if, whenα f andβ f are big enough, the flow becomes independent of their
value, there is not a general rule for their determination. The major drawback of this forcing,
however, is that big values ofα f andβ f render Eq. (1) stiff and its time integration requires
very small time steps. Goldsteinet al. [6] performed the stability analysis and they found
that when all the forcing terms are computed explicitly, for an Adams–Bashforth scheme
the stability limit is given by1t <(−β f −

√———————
(β2

f − 2α f k))/α f , k being a flow dependent
constant of order 1. To have a flavor of how restrictive this constrain is we can refer to the
simulations of Goldsteinet al. [6] that were performed at aCFL=O(10−3− 10−2). Since
the main aim of the present study is to develop a method for simulating three-dimensional
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flows in complex geometries we found the above limitation too restrictive making the
simulation of three-dimensional flows too expensive.

A partial improvement to the stability limit is obtained when the second term in the right
hand side of Eq. (3) is computed implicitly in time,

f l+1/2 = α f

[
γl

∫ t l

0
q · dt + ρl

∫ t l−1

0
q · dt

]
+ β f

[
αl

ql+1+ ql

2

]
(4)

l being the discrete time level andγl , ρl , andαl the coefficients of the time integration
scheme.2

This modification allows us to increase considerably the time step with respect to a
fully explicit treatment of the forcing. Once again the time step size depends on the values
of α f andβ f and also on the kind of flow and its Reynolds number. Nevertheless, the
simulations that with the fully explicit scheme where performed atCFL= 10−3 now were
run at CFL= 2.5 · 10−2− 10−1 which represents a substantial improvement. It is worth
noting that this modification does not require extra memory; it only needs the change of the
coefficients related to the implicitly treated terms that, in case of moving boundaries, must
be recomputed every time step.

It should be stressed that the stability of the calculation (and therefore the time step size)
depends not only on the values ofα f andβ f but also on the flow, i.e., on the details of
the geometry to be mimicked. We have observed, for example, that the presence of sharp
corners prevents the adoption of small values (in magnitude) ofα f andβ f . On the other
hand, for smooth geometries small values of the constants can be used and simulations up
to CFL= 0.5 can be run. It is also possible to relax the values ofα f andβ f during the
“quiet” phases of the flow evolution, but there is no unique criterion for this andad hoc
judgments are needed.

2.2. Direct forcing. An alternative expression for the forcingf which, when properly
computed, does not suffer from the limitations previously mentioned was derived by Mohd-
Yusof [12]. If Eq. (1) is discretized in time, we have

ul+1− ul

1t
= RHSl+1/2+ f l+1/2, (5)

where RHSl+1/2 contains convective and viscous terms and the pressure gradient. If now
we ask which value off l+1/2 will yield ul+1=Vl+1 on the immersed boundary the answer
is simply given from the above equation,

f l+1/2 = −RHSl+1/2+ Vl+1− ul

1t
. (6)

This forcing is direct in the sense that the desired value of velocity is imposed directly on
the boundary without any dynamical process. Therefore, at every time step, the boundary
condition holds regardless of the frequencies in the flow. Another advantage is that there are

2 For example, if an Adams–Bashforth scheme is used for the explicit term and a Crank–Nicolson scheme for
the implicit term the coefficients in Eq. (4) arel = 1 andγ1= 3/2, ρ1=−1/2, andα1= 1. The results shown in
the present paper have been obtained using a hybrid third order Runge–Kutta Crank–Nicolson scheme for which
we havel = 1, 2, 3 and the coefficients can be found in Verzicco and Orlandi [26].
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no free constants to choose and the boundary conditions are exactly enforced. In addition
the forcing of Eq. (6) does not require additional CPU time since it does not involve the
computation of extra terms, and, when every term is computed at the appropriate time (see
the Appendix), it does not influence the stability of the time integration scheme.

2.3. Interpolation procedures.As mentioned at the beginning of Section 2, the expres-
sions given for the forcing would be correct if the position of the unknowns on the grid
coincided with that of the immersed boundary. This in general is not true because it would
require the boundary to lie on coordinate lines or surfaces which is not the case for complex
curvilinear geometries. In particular, in the present case, where a staggered grid is used,
even if the boundary was coincident with the position where one velocity component was
defined, this would not be so for the other components. Therefore, an interpolation proce-
dure would be needed anyway. In order to test the importance of the interpolation, we have
implemented three different procedures, and we have computed the effect on the accuracy
of the scheme.

The simplest possibility is to select the gridpoints closest to the immersed boundary and
to apply the forcing as if position of the unknown and the boundary were coincident. In
fact, in this case there is no interpolation and the geometry is described in a stepwise way
(Fig. 2a). Note also that the surface is somewhat diffused since the 3 velocity boundary
conditions are applied at different locations.

The second procedure consists of computing for each cell crossed by the boundary the
volume fraction occupied by the bodyψb with respect to the volume of the cellψ . The
weight coefficientψb/ψ is then used to scale the forcing applied to the unknowns closest to
the boundary. For example, with reference to Fig. 2b for theui variable the forcing would
be fiψb/ψ, fi being thei th component of one of the forcings computed above (Eqs. (2),
(4), (6)).

In the third case, instead of applying a scaling to the forcing, we compute the velocity value
that, in a linear approximation, the point closest to the boundary would have if the boundary
had the velocityV. In Fig. 2c the procedure for one gridpoint is shown, and the forcing is
simply given by one of the expressions above with the imposed velocityV̄ instead ofV.

In order to test these procedures, we computed the formation of a vortex ring by injecting a
finite amount of fluid through a curvilinear nozzle (Fig. 3a). The flow and the geometry have
been selected in such a way to reproduce an existing experimental apparatus whose flows
have been used to validate the numerical results. A detailed comparison with the experiments
will be shown in Subsection 3.1; here we only compare the different numerical results to

FIG. 2. Sketch of the interpolation procedures: (a) no interpolation⇒ stepwise geometry, (b) volume fraction
weighting, (c) velocity interpolation.
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FIG. 3. (a) Sketch of the ring formation problem and its boundary conditions; (b) immersed boundary without
interpolation (—) and with interpolation (- - -).

estimate the accuracy of the resulting scheme. The efficiency of the different forcings will
be considered in the next subsection. Preliminary simulations have shown that the accuracy
of the scheme is independent of weather the forcing of Eq. (4) or (6) is used (see also the next
section); therefore, for the moment we will leave the forcing unspecified, and we focus only
on the interpolation procedure. In Fig. 4, we show the evolution of the formation of the ring
subsequent to the injection of fluid and the generation of secondary vorticity that eventually
rolls up in a secondary vortex ring. In order to analyze the accuracy of each interpolation

FIG. 4. Azimuthal vorticity contour plots for the vortex ring formation from a curvilinear nozzle,
Re= 1500(129× 257 gridpoints, respectively, in the radial and axial directions); panels are att = 2.5 (a),t = 5.0
(b), andt = 7.5 (c) time units. —, for positive;· · · , for negative values (1ωθ =±2.).
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FIG. 5. L2-norm error of the axial velocity component vs number of gridpoints:d, interpolated velocities;
j, volume fraction;e, stepwise geometry; · · · , −2 slope; - - -,−1 slope.

procedure, the simulation of Fig. 4 has been repeated using different grids ranging from
385× 769 down to 49× 97 in the radial and axial directions, respectively. Regarding the
solution on the finest grid as “exact” we have computed the errors of the solutions obtained
on the coarser grids. Both thel2 norm and maxima errors have been computed for the
radial and axial velocity components always showing the same behaviour; therefore here
we report thel2 norm error for the axial velocity component as a representative case. In
Fig. 5, it is shown that for the stepwise geometry (reported also in Fig. 3b with a solid
line) the error decreases slower than first order. Better results are obtained by weighting the
forcing by the volume fraction of the cell occupied by the body, improving the error to first
order. Indeed preliminary simulations of flows over flat immersed boundaries have shown
that this interpolation procedure underestimates the velocities at the boundary; therefore,
even if the geometry is now smooth the velocity boundary conditions are not completely
satisfactory yet. The best results are given by the third interpolation approach which yields
a solution essentially accurate to second order. This means that within the overall accuracy
of the scheme the immersed boundaries are mimicked “exactly.” This result is not surprising
since a linear interpolation has a second order accuracy; however, it must be noted that with
this interpolation we do not solve any equation at the first gridpoint external to the boundary
but we are rather imposing a linear velocity profile.

This interpolation scheme is more accurate than those proposed by Peskin [1] and Saiki
and Biringen [7] that the authors refer to as first-order accurate; nevertheless in the present
case, very close to a wall the velocity profile is assumed to be approximately linear, and this
requires the grid to be fine enough in the region of the immersed boundary. Although some
local refinement can be obtained using non-uniform orthogonal grids, this is not always
possible for every complex geometry. This aspect could be improved on by combining
immersed boundaries with embedded grids [14, 15], but a cost/benefit estimate should be
performed to see if in this case the immersed boundary technique is still advantageous with
respect to a scheme with boundary conforming meshes.

Before concluding this section we wish to stress the following points: in this technique
there is no difference between steady or moving boundaries (at least if the motion of the
wall is prescribed). In fact in both cases a velocity value coming from the interpolation of
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Fig. 2c is assigned as boundary condition. Of course in the case of moving bodies the points
over which this boundary condition is assigned must be recomputed every time step but this
does not change the nature of the interpolation.

Sharp corners are treated as the other parts of the immersed boundary. In fact we are using
a staggered grid; therefore we must compute for every velocity component its distance from
the boundary. In this respect it does not make any difference if the boundary is smooth or a
sharp corner.

2.4. Efficiency of the forcings.In the previous section, we have shown how the inter-
polation procedure affects the accuracy of the numerical scheme. In the discussion, we
have left unspecified the particular expression of the forcing since we have found that the
accuracy is independent of the forcing used. In contrast, now we are concerned with the
efficiency of the method, and this proved to be strongly dependent on the forcing used.

We have again considered the flow of Fig. 4, and using the forcing of Eq. (4) we have
repeated the simulation gradually increasingCFL up to the stability limit. It turned out that
with the semi-implicit treatment of that forcing, the integration could be performed up to
CFL= 0.025 which is already a substantial improvement with respect to theCFL=O(10−3)

imposed by the fully explicit treatment.
In order to compare the results of the two forcings, in another simulation, we have fixed

the CFL= 0.025 and we have used the forcing of Eq. (6). The results obtained with the
two forcings are compared in Fig. 6a and they prove to be indistinguishable from each
other. Nevertheless, while the first forcing is already at its stability limit, the simulation
with the second forcing can be run at much higherCFL without losing stability or accuracy.
In Fig. 6b the time evolution of the peak vorticity for the flow in Fig. 4 is shown for several
CFLs. It can be noted that the long term dynamics are well predicted even by the simulation
at CFL= 1.5 which is very close to the theoretical stability limitCFL=√3 of the third
order Runge–Kutta.

It is worth noting that while both forcings give the same results, since theCFL depends
linearly on the time step size, the direct forcing allows a speed-up of about 60, making this
technique very appealing for the computation of three-dimensional flows. Accordingly, all
the numerical simulations shown in Section 3 have been performed using the forcing of
Eq. (6) at aCFL of about 1.5.

Once again we wish to stress that better performances could have been obtained from
the feedback forcing by tuning theα f andβ f constants during the flow evolution; however,
since a quantitative procedure is not available, this tuning would rely too much on the
personal judgment of the researcher making the technique somewhat subjective.

2.5. Internal treatment of the body.A few words should be said about the internal
treatment of the bodies since the forcings described in Subsections 2.1 and 2.2 only hold
at the boundary. For the internal treatment of the body there are several possibilities, even
if in our simulations we have found that the external flow is essentially independent of the
internal conditions.

A first possibility is to apply the forcing inside the body without any smoothing. This
is equivalent to imposing the velocity distribution inside the body with the pressure that
adjusts accordingly.

An alternative approach consists of leaving the interior of the body free to develop a flow
without imposing anything. Of course, in this case the flow pattern inside the body will be
different from the previous case, but the external flow is unchanged.
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FIG. 6. Time evolution of the peak azimuthal vorticity for the vortex ring formation problem; (a) simula-
tions atCFL= 0.025—forcing of Subsection 2.2; · · · , forcing of Subsection 2.1; (b) simulations with forcing of
Subsection 2.2; –· –, CFL= 1.5; - - -, CFL= 1.0; · · · , CFL= 0.5; —CFL= 0.025 (129× 257 grid).

The last possibility we have investigated is to reverse the velocity at the first point inside
the body in such a way that it still resultsu=V on the boundary. This approach is equivalent
to continuing the linear velocity profile of figure 2c up to the first gridpoint inside the body.
Also in this case the internal flow pattern is different again, but the external flow is the same
as before. Note that this internal treatment was required by [12] in spectral simulations to
alleviate the problem of spurious oscillations near the boundary; this procedure was used
also by Goldsteinet al. [6] for their simulations.

Extensive testing of these procedures has been performed to check the influence of the
internal treatment of the body on the accuracy and the efficiency of the scheme. We have
found that when using the direct forcing of Subsection 2.2 there is essentially no influence.
Therefore, depending on the particular flow, the easiest treatment can be used. On the other
hand, the feedback forcing of Subsection 2.1 required smaller values ofα f andβ f (in
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absolute value) when the velocity distribution inside the body was prescribed. Although
this did not affect the external flow, lower values ofα f andβ f allowed the use of bigger
time steps, thus improving the efficiency.

3. RESULTS

In this section we will show some applications of the immersed boundary technique in
order to validate the procedure and the numerical results. We consider three different flows
which can be considered as prototypes of interesting problems for practical applications.
The first two examples are moderate-Reynolds flows; therefore, the simulations were carried
out without a turbulence model (i.e., direct numerical simulations). In contrast the flow of
Subsection 3.3 is the reproduction of an experiment and the high Reynolds number required
a sub-grid-scale turbulence model (i.e., large-eddy simulation).

In particular, in the next subsection, we will show the formation of a vortex ring, and the
results will be compared with laboratory experiments performed under the same conditions
in order to validate the numerical results with flow visualization. In Subsection 3.2 we
consider the flow around a sphere for which extensive data are available in the literature
for the axisymmetric and the fully three-dimensional flow. In particular, we will show for
the sphere that the present approach is capable of predicting not only the flow patterns but
also the force coefficients, which are the most relevant quantities in practical applications.
Finally in Subsection 3.3 we will mention some results obtained for the computation of
the flow inside a motored IC piston/cylinder assembly. This example is important since the
experimental data were obtained for a high Reynolds number and a turbulence model was
needed in the computation. We will show that even in this case the results given by the
immersed boundary technique are very good, and this makes this method very promising
for industrial applications.

3.1. Vortex ring formation. The generation of a vortex ring is generally obtained by
pushing a finite amount of fluid through a nozzle of diameterD. In the present case, this was
achieved experimentally by a piston/cylinder assembly driven by a AC motor/cam/electric
clutch mechanism by which the (constant) velocity of the piston (Up) and the stroke
(L = D/4) could be controlled. The cylinder, of diameterDc= 2D, was connected to a
curvilinear nozzle like that shown in Fig. 3a. The nozzle provided an acceleration to the
flow and at the end of the stoke the piston was flush with the bottom margin of the panels of
Fig. 7 (i.e., at the positionx= 0 in Fig. 3b). The ring was generated in water and injected
fluid was coloured by di-sodium fluorescein illuminated by a laser sheet in a plane crossing
the axisymmetric nozzle through a diameter. This provided flow visualizations of Fig. 7
that could be compared with the numerical simulations. Further details of the experimental
apparatus can be found in Verzicco and Orlandi [13]; here we only wish to stress that the
vortex ring was injected in a full tank of 50× 50× 70 cm3, thus containing 175 liters of
water. This large amount of water was changed only after several rings were produced, and
although we tried before each run to eliminate all the fluorescein from the previous shot,
some small parcels were left inside the tank like the “wisps” of Fig. 7.

Let D be the exhaust diameter of the nozzle,U ' 4Up the mean flow velocity andν
the kinematic viscosity of the working fluid. Then a Reynolds number for the present flow
can be defined byRe=U D/ν. The dynamics of the ring generation have been already the
subject of many papers; therefore, we will only summarize it here.
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FIG. 7. Experimentalflow visualizations of the vortex ring formation atRe= 2500; panels are att = 2.5
(a), 5 (b), 7.5 (c), 10 (d), 40 (e), and 60 (f) time units.

As the fluid flows along the inner walls of the nozzle some vorticity is generated and this
separates at the corner in the exhaust region. This vortex sheet is very unstable and starts
rolling up forming a compact toroidal structure (Fig. 7a). During the roll-up some ambient
irrotational fluid is entrained. The initial impulse is thus shared with a larger quantity of
fluid, and this causes the ring to translate slower than the ejection velocityU . During the
roll up, the primary vorticity induces at the external wall of the nozzle a secondary vorticity
that also separates at the corner and forms a secondary vortex ring (Fig. 7b). This structure,
however, has a circulation oppositely signed with respect to the primary ring, and thus
propagates backward inside the nozzle (Figs. 7c–7d). During the descent, this ring interacts
with the head of the piston following the dynamics of the ring/wall collision extensively
described in Verzicco and Orlandi [13] (Fig. 7e). Depending on the Reynolds number, i.e.,
on the strength of the primary vortex ring, the secondary vortex can be strong enough to
generate a tertiary vortex ring that propagates in the positive axial direction (Figs. 7e–7f).

The dynamics described above only occur if the Reynolds number is high enough. In
particular in the present experiments, the tertiary ring propagated away from the nozzle
only for Re≥ 2500, whileRe≥ 1500 was necessary for the secondary ring to interact with
the piston at its upper position. Finally, only forRe≥ 500 was the strength of the primary
sufficient to generate a secondary ring.

We have repeated the above described laboratory experiment by numerical simulation
with the shape of the curvilinear nozzle reproduced by the immersed boundary technique.
The only relevant difference between the experiment and the simulation was that the motion
of the piston was not computed. At the inflow of Fig. 3a, we prescribed a constant flow rate for
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a time equal to that of the piston motion(T = 2D/U ) in the experiment, and after the bound-
ary was set as a no-slip wall to account for the presence of the piston at the end of its stroke.

The variation of flow behavior with Reynolds number has been confirmed by the nu-
merical simulations, and in Fig. 8 evidence of the three flow regimes is given. That the

FIG. 8. Contour plots of passive scalar (1Q= 0.1) att = 5, t = 40, andt = 60 time units atRe= 500 (a)-(b)-
(c) (129× 257 grid);Re= 1500 (d)-(e)-(f) (129× 257 grid);Re= 2500 (g)-(h)-(i) (193× 385 grid). The Peclet
number isPe= 10000 in every simulation.
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FIG. 9. Comparison between numerical and experimental vortex trajectories atRe= 500 (a),Re= 1500
(b),Re= 2500 (c). Primary ring: filledn, numerical;d, experimental results. Secondary ring: filled,, numerical;
filled e, experimental results. Tertiary ring:j, numerical;×, experimental results.

agreement is not only qualitative but also quantitative is shown in Fig. 9 where the numeri-
cal and experimental trajectories for the three flow regimes are given. When comparing the
results, it must be noted that in the experiments the trajectories have been evaluated from
frames like those of Fig. 7. Therefore some uncertainty in the evaluation of the centres of
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the compact patches is possible. In addition the diffusivity of scalars in water is extremely
small with Peclet numberPe=O(106) (for Re=O(103)), and such a small value cannot be
used in numerical simulations owing to resolution problems. This implies that the numeri-
cally simulated scalar is more diffusive than in reality and this could cause some additional
mismatch.

Before concluding this section, we wish to stress that concerning the passive scalar
transportation we were not able to impose exactly the condition∇Q · n= 0 along the im-
mersed boundary and as a palliative we canceled out the viscous terms of the passive scalar
equation inside the mimicked body. This prevents the scalar from diffusing inside the body
and, since the velocity is zero at the wall, the convection is also inhibited. Although the
resulting fields show a satisfactory behaviour, we are aware that it is not “exact” and it was
only meant as a means to compare computer simulations and laboratory experiments within
this study.

3.2. Flow around a sphere.In the previous section, we have seen that the immersed
boundary technique can cope very well with flow in a complex geometry whose boundary
crosses the coordinate lines. In that case, however, owing to the presence of a sharp corner the
separation of the flow was naturally imposed by the geometry and an inaccurate treatment
of the geometry probably would not affect the flow evolution. For this reason we will show
here the results of the flow around a spheres since in this case the body is smooth everywhere
and the flow separation is determined solely by the viscous processes at the wall. We believe
that this flow should display every problem in the treatment of the boundary, and for this
reason extensive analysis has been performed.

In this case, a uniform flow with velocityU is imposed at a certain distance from a sphere
having a diameterD. The Reynolds number is nowRe=U D/ν, and, depending on its value,
the flow exhibits different regimes ranging from steady to unsteady up to fully turbulent.
Indeed, in the present study, the fully turbulent regime has not been considered since it would
require a large computational effort, which is beyond the purposes of the present paper.

As a first test, we have reproduced the simulations carried out by Fornberg [16] that used
boundary fitted meshes to simulate the axisymmetric flow around a sphere fromRe= 100 up
toRe= 5000. Those results were checked for grid-independence and domain size; therefore,
they can be considered accurate enough to be used as reference solutions. We are aware that
for Re≥ 300 the hypothesis of axial symmetry is not physical because the flow develops
three dimensionality in the wake; however, the high-Re axisymmetric simulations were
used to compare our results with those of Fornberg [16] obtained with a similar hypothesis.
In the second part of this section, in contrast, we will simulate the full three-dimensional
flow to capture the losses of symmetry occurring atRe' 300 andRe' 450 (Mittal [17]).

The simulations have been performed on a grid like that of Fig. 11a. Both in the radial
and axial directions a non-uniform mesh has been used in order to cluster enough gridpoints
in the region around the sphere. The spatial resolution of each simulation has been varied
according to the Reynolds number and the grid refinement check for the most critical cases
has been performed. At the external radial boundary a free slip condition has been imposed
and this could cause a flow acceleration, due to blocking effects, if the radial boundary is
placed too close to the sphere. Preliminary simulations have shown that a radial boundary at
4 sphere diameters induced negligible errors while an adequate radial stretching of the grid
allowed the use of a sparse grid in the dynamically passive region. Another possible cause
of error is the proximity of the sphere to the inflow which was assumed axially uniform;
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FIG. 10. (a) Length of the separation bubble vsRe; d, present results;j, results by [16]. —, linear fit from
[18]. (The length atRe= 1000 is not reported to avoid the shrinking of the data atRe≤ 100, it results̀ /D= 2.4 in
the present case and`/D= 2.5 by [16].) (b) Pressure profiles over the sphere surface atRe= 100, 200, 500, and
1000 (Re= 100 corresponds to the line with the most negative values andRe= 1000 is that with the less negative
values); —, present results;· · · , data from Fornberg [16].

also in this case some tests have been performed and a location of the sphere 3 diameters
downstream of the inflow was found satisfactory. Downstream of the sphere the domain was
4 sphere diameters long, and at the outflow convective boundary conditions [20] were used.

According to Batchelor [18] the flow around a sphere does not separate up toRe' 24,
and for increasing Reynolds number the axial length of the separation bubble grows linearly
up toRe' 100. The same results have been found by the present numerical simulations, and
the length of the separation bubble is very well predicted as shown in Fig. 10. Concerning
the onset of the separation we have found that the flow remains attached up toRe= 22, while
for 23≤Re≤ 25 the separation length is of order of 10−2D. Using the results published by
Fornberg [16], we could compare forRe≥ 100 the pressure distribution over the surface of
the sphere and the force coefficients. Representative pressure fields for various Reynolds
numbers are shown in Fig. 11, while the pressure profiles over the surface of the sphere
are given in Fig. 10b together with the curves computed by Fornberg [16]. At first glance
the correct behaviour of the pressure might appear very surprising since the boundary
body force apparently does not imply any condition for the pressure. In the Appendix,
however, it will be shown that indeed the correct boundary conditions for the pressure
are automatically imposed by the forcing thus explaining this good agreement. From the
pressure and velocity field around the sphere we have computed also the drag coefficient
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FIG. 11. (a) Stretching of the grid used for the computation of the flow around the sphere. Pressure contour
plots atRe= 200 (b), 500 (c), and 1000 (d). (1p=±0.05, —, positive;· · · , negative, - - -, 0 value). Grid 129× 257
gridpoints, respectively, in the radial and axial directions.

Cd that, as shown in Table I, agrees very well with the results of Fornberg [16] and the
error never exceeds the 2%. Considering that the resolution of the boundary layer used by
Fornberg [16] with the body fitted mesh was incomparably better than ours, we can consider
the present values of theCd essentially correct. It must be noted that the drag coefficient is
made by two contributions: pressure and viscous drag. For each simulation we have checked
that each separate term compares well with the results given by Fornberg [16]. In addition,
in Fig. 12, we show that the rate of convergence of the present drag coefficient to the value
of Fornberg [16] is second order for the finer grids and even third order for the coarser
grids; this behaviour is not surprising since the drag coefficient is an integrated quantity,
and its convergence rate is consistent with the results of Fig. 5. This result is very important
for the validation of the immersed boundary approach because we have shown that all the
viscous processes and the pressure dynamics are correctly handled even if these simulations
are much more inexpensive than those performed on a curvilinear grid (see Section 4 for
quantitative comparisons).

TABLE I

Comparison of the Drag Coefficient for the Flow around

the Sphere at Different Reynolds Numbers

Re CD (Fornberg [16]) CD (Present results) % error

100 1.0852 1.0794 0.53
200 0.7683 0.7567 1.50
500 0.4818 0.4758 1.24

1000 0.3187 0.3209 0.69
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FIG. 12. Convergence of the drag coefficientCD to the value given by Fornberg [16]CDF vs number of grid
points.· · · , slope−3; - - -, slope−2 given for comparison. Flow atRe= 100.

In order to test the capability of the code to cope with fully three-dimensional flows and
to capture flow transitions, we have performed some simulations in which the hypothesis
of axial symmetry was removed. Similar simulations were performed by Mittal [17] using
boundary fitted grids and he found that the flow preserves symmetry forRe≤ 270. When the
Reynolds number is in between 270 and 300 the wake becomes wavy but it still preserves
symmetry about a plane crossing the sphere in the centre. Finally forRe≥ 450 the flow
becomes fully three dimensional and all symmetry is lost.

In the present simulations, we have initiated the three dimensionality as follows: over
a developed axisymmetric flow, we have imposed a perturbation of the inflow according
to U (θ)=U (0)[1+ Asin(θ )] with A= 0.25 for all simulations. This perturbation was ap-
plied for a window of time of 5D/U units and then stopped. The response of the flow to
this perturbation was analysed by looking at the azimuthal energy modes. Ifu(r, θ, x) is
the velocity field, after a Fourier transform in the azimuthal direction, we haveũ(r, k, x)
with k the azimuthal wavenumber. Indicating byũ∗ the complex conjugate of̃u we com-
pute E(k)= ∫ Lr

0

∫ Lx

0 ũ∗ · ũ dr dx, Lr and Lx being the dimensions of the computational
domain in the radial and axial directions, respectively.E(k) is proportional to the kinetic
energy of the field in the azimuthal wavenumberk and its evolution is shown in Fig. 13
for three different Reynolds numbers. We can see that when the Reynolds number is below
the first critical value, the perturbation gradually dies out and the flow recovers its initial
axial symmetry (Fig. 13a). When the Reynolds is slightly above the threshold, in contrast,

FIG. 13. Time evolution of the azimuthal energy modes for the three-dimensional flow around the sphere at
Re= 200 (a), 300 (b), and 500 (c). —,k= 1; thick - - -,k= 2; - - -,k= 3; · · · ,k= 4; – -–,k= 5; and –·–,k= 6. (In the
long term evolution of panels (b) and (c) the lines for the modes 1 to 6 are monotonically decreasing in amplitude.)
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FIG. 14. Contour plots of azimuthal vorticity atRe= 300 (a)–(c) andRe= 500 (d)–(f) through orthogonal
sections. Ther − θ sections (c) and (f) are taken in both cases at a distancex/D= 2 downstream of the sphere
(1ωθ =±2). Grid 97× 97× 193 gridpoints in the azimuthal, radial, and axial directions.

the perturbation is sustained indicating that the flow has some three dimensionality. It is
worth noting that the immediate response of the energy modes to the given perturbation
displays the growth only of the odd modes thus confirming that a symmetry about one
plane is retained. Later on, however, the even modes start growing owing to the nonlinear
interaction of the odd ones. It might seem that the energy spreading among all the az-
imuthal modes evidences the loss of symmetry about a plane; however, this is true only
when the flow remains centered at the axis (i.e., thek= 1 mode has zero energy). In this
flow this certainly does not happen since the wake oscillates off axis and this explains why
the flow is still symmetric even if all azimuthal modes contain energy. This is confirmed
by the vorticity contour plots of Fig. 14 showing the oscillation of the wake only in one
plane. It might be objected that this behaviour is a consequence of the perturbation which is
also symmetric. However, while the symmetry of the perturbation was about theθ =±π/2
plane the symmetry of the wake is about a different plane thus excluding the objection.
In addition, Mittal [17] obtained essentially the same results starting from a random per-
turbation without any symmetry. The last simulation is performed atRe= 500 which is
above the second critical Reynolds number. Now all energy modes gain energy directly
form the perturbation indicating the loss of the previous symmetry. Again this is confirmed
by the flow visualizations of Fig. 14 showing the waviness of the wake in two orthogonal
planes.

3.3. Flow inside a IC piston. In this last example we show the capability of the method
to simulate high-Returbulent flows in complex geometries for which a turbulence model is
needed. In addition, this example includes a moving boundary, a feature which was missing
in the two previous flows.

The configuration chosen is a simplified axisymmetric piston-cylinder assembly with a
fixed central valve. For a configuration like that of Fig. 15a, experimental measurements
are available for the validation of the numerical results. In particular, Morseet al.[19] used
laser-Doppler anemometry to measure phase averaged mean and rms radial profiles of axial
velocity. The profiles are available at 10-mm increments starting from the cylinder head for
crank angles 36◦ and 144◦ after top dead center. In the experiment, the piston was externally
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FIG. 15. Flow inside the IC piston: geometry details (a) and grid with the immersed boundary (b). Vector
plots att =π/2 of the oscillation cycle (c) and (d). Ther − θ section (d) is taken 10 mm below the ceiling of the
cylinder. Grid 65× 65× 151.

driven so that the fluid flowed into the cylinder from outside during the downward piston
motion and vice versa when the piston moved up. Since the valve was fixed and a tiny
annular gap was left open between the valve and the cylinder head, no compression phase
was included in the flow dynamics. The piston was driven by a simple harmonic motion at
a speed of 200 rpm' 21 rad/s which for the present geometry yields a mean piston speed
of V̄p= 0.4 m/s (when averaged over half cycle). The Reynolds number of the flow based
on V̄p and on the piston radius isRe= 2000 in air.

Details of the subgrid-scale model used in this computation are given in Verziccoet al.
[20]. Here it suffices to mention that a dynamic Smagorinsky model was used (Germano
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FIG. 16. Comparison between numerical and experimental averaged vertical velocity profiles for the crank
angle 36◦ respectively 10 (a), 20 (b), and 30 mm (c) below the cylinder ceiling.—, present results;e, experiments
by [19]. The abscissa is expressed in millimeters. The velocity profiles drop to zero forr ≥ 37.5 mm when the
immersed boundary region is crossed.

et al. [21] and Lilly [22]) and all the points with total viscosity smaller than zero were
clipped; their number never exceeded the 3% of the total points. In Verziccoet al. [20] all
the details of the computation and the boundary conditions are given; in this paper we only
mention that all the solid surfaces are obtained by immersed boundaries (Fig. 15) while the
lateral surface is free-slip. At the lower surface a prescribed mass flow is assigned with a
constant axial velocity profile in such a way as to preserve the free divergence in the region
between the lower boundary and the piston. At the upper boundary, convective boundary
conditions are used as extensively explained in [20].

In Verziccoet al.[20] extensive analysis of the flow inside the piston has been performed
showing the changes in the dynamics when the axial symmetry was enforced, when three-
dimensionality developed, and when the turbulence sets in. In this paper we only show the
turbulent case for which the comparison with the experiments was made.

In Fig. 15 snapshots during one instant of the oscillating cycle are given and the high
three dimensionality of the flow can be appreciated from the vector plots in orthogonal
sections. Radial profiles of axial velocity were obtained by phase averaging the fields over
four piston cycles and then averaging in the azimuthal direction. These profiles are shown
in Fig. 16 for several distances from the top of the cylinder at two different crank angles and
the comparison with the experimental data shows that the agreement is always very good.
In Verziccoet al. [20] profiles for additional sections and rms profiles of axial velocity
are also given showing that the quality of the agreement is always very good. Finally in
Haworth [23] the present results are compared also with the data obtained by a code using an
unstructured boundary fitted deformable mesh. In that paper it is shown that the quality of
the results is the same even though the immersed boundary technique is much less expensive
(see Section 4 for a quantitative comparison).

4. CLOSING REMARKS

In Section 3 we have discussed three numerical examples showing the capability of
the present method to deal with different complex geometry flows. We have seen that,
although the flows are quite complex, the simulations are in fact performed on simple grids.
Therefore, two main advantages immediately arise. The first is that the computer codes are
much simpler than the curvilinear coordinate counterparts since the former do not need
metric arrays and the solution procedure requires less operations per node. This implies that
immersed-boundary codes have in general low RAM and CPU-time requirements making
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possible three-dimensional complex flow simulations on PCs or small workstations. For
example, for the flow around the sphere, Fornberg [16] reports that his code required
708 Mb of memory for a grid 487× 163 on a 64-bit precision machine. The present code,
for the same grid in double precision, has a size of only 20 Mb; the comparison of the CPU
time is not given since Fornberg’s simulations were run in 1988 and the actual processor
speeds are not comparable.

A better comparison can be performed for the IC cylinder flow of Subsection 3.3 which
was simulated at the same time using body-fitted and immersed boundary codes. The present
incompressible immersed-boundary three-dimensional turbulent case was run on a PC-like
workstation (500-MHz processor) with 128 Mb of RAM in about one week using a grid
of approximately 6· 105 nodes (about 24 CPU-hours per engine cycle). By contrast, the
compressible unstructured boundary-fitted deforming-grid case by Haworth and Jansen
[24] (≈1.5 · 105 nodes) was run either on a single processor of a Cray T-90 or on eight
processors of a SGI Origin 2000, occupied 600 Mb of RAM, and required 30–40 CPU-
hours per engine cycle. Further simulations were performed by Haworth and Jansen [24]
with increased spatial resolution and results of the same quality as the present required a grid
of 5 · 105 nodes with a consistently higher memory and CPU time requirement (Haworth,
personal communication).

On the other hand, the present immersed boundary technique has some disadvantages
that should be considered when deciding which approach is the most convenient for a given
problem. In fact, the points inside the mimicked boundary are passive concerning the flow
dynamics but the equations of motion are integrated in that region anyway. For this reason
the choice of the “simple grid” over which equations are integrated must be a compromise
between the need of having an efficient computer code and a low percentage of the total
gridpoints inside the boundaries. For the examples shown in this paper a polar-cylindrical
grid was a quite natural choice, but this is not always the case. For example, if one had to
compute the flow inside a 90◦-bent circular pipe neither a rectangular nor a polar-cylindrical
grid would be appropriate since most of the points would be in the passive region making
the use of the immersed boundary technique uneconomical. Similarly, flows around bodies
at very high Re would be problematic since, while only a small portion of the computational
volume would be in the body, the grid stretching required to resolve the boundary layers
would place a large number of wasted gridpoints in that region.

Another drawback is related to the interpolation procedure of the forcing; in fact, as
mentioned in Subsection 2.3 at the first gridpoint outside the boundary we are not solving
the Navier–Stokes equations but we enforce a velocity coming from a linearization. This
requires the grid to be fine enough close to the boundary so that the linearized velocity is
accurate. This has been obtained in the present paper by clustering the gridpoints in the
boundary regions. For simple geometries, like the sphere of Subsection 3.2 this has been
very easy even if many points have been concentrated also inside the sphere thus in the
passive region. For a more complex geometry, like the IC cylinder, this strategy was only
partially successful, but the results are still satisfactory. There might be cases, however, in
which a nonuniform grid is not enough to have an accurate description of the boundary, and
in those cases a body fitted mesh would be perhaps preferable.

A remedy for both the above problems could be the combination of the immersed bound-
aries with the embedded grids. This possibility has been pursued by [14, 15] for the standard
body-fitted approach and only recently by Romaet al.[25] for the immersed boundary tech-
nique applied to two-dimensional flows. If the results obtained for the B-splines [15] would
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be confirmed also for finite-difference/immersed boundary approximations the above com-
bination promises to be very powerful.

APPENDIX: SOME COMPUTATIONAL DETAILS

In this appendix, we describe in particular how the integration of Eq. (1) is changed
by the presence of the forcingf. The integration procedure is essentially that described
in Verzicco and Orlandi [26] and it consists of a fractional-step method in combination
with a hybrid third-order Runge–Kutta explicit scheme for the convective terms and an
implicit Crank–Nicolson for the viscous terms. The advantage of the third order Runge–
Kutta scheme with respect to other time-integration procedures is the improved stability
condition that, with the help of the viscous terms, results inCFL' 2. Indeed in this scheme
each time step is advanced through three substeps thus implying three times more operations
than the common second-order schemes; nevertheless the third-order Runge–Kutta is still
advantageous since it does not require extra storage and at the same computational cost as
other second-order schemes yields an error which is generally smaller.

Concerning the implicit treatment of the viscous terms, this is done in order to avoid
the restrictive viscous stability condition1t ≤1x2Re/(2n) beingn the number of spatial
dimensions (Ferziger and Peric [27, p. 135]). It might be thought that for high-Reflows
the condition becomes less restrictive; however, as the Reynolds number increases the grid
spacing must be decreased as well making the stability condition always more restrictive
than the CFL condition. This is true even when performing large-eddy simulations. In fact
for the case of Subsection 3.3 it has been verified that while the turbulent stresses only play
a marginal role in the stability of the integration, the viscous stresses are the most restrictive
and, if they had not been computed implicitly, the integration time step would have been
about ten times smaller than the limit given by the CFL condition.

Equation (1) is provisionally advanced in time using the pressure at the previous time
step. Thus we obtain a non-solenoidal velocity fieldû given by

û− ul

1t
= −αl∇ pl − [γl∇(uu)l + ρl∇(uu)l−1] + αl

2Re
∇2(û+ ul )+ f l+ 1

2 . (7)

û is then projected onto a solenoidal field by

ul+1 = û− αl1t∇φl+1, (8)

with the scalarφl+1 computed applying the divergence to the above equation thus solving

∇2φl+1 = −∇ · û
αl1t

. (9)

Once the scalarφl+1 is known the velocity field is updated using Eq. (8) and the new pressure
field is obtained from

pl+1 = pl + φl+1− αl1t

2Re
∇2φl+1. (10)

The first point to be noted is that when comparing Eq. (7) with Eq. (5) (withû instead of
ul+1) we see that, owing to the implicit treatment of the viscous terms, RSHl+1/2 is in fact a
function ofû therefore the evaluation off l+1/2 through Eq. (6) is not explicit but it requires



58 FADLUN ET AL.

the inversion of a discrete system of equations coupled with that of the discrete momentum
equation. In practice the inversion of this additional system is not performed because Eqs. (7)
and (6) can be properly recast in such a way that only the standard Eq. (7) is inverted. Since
the notation is the easiest in one dimension we will show the procedure only for one-
dimensional equations, the extension to two and three dimensions being straightforward.
First we note that Eq. (7) holds both in the fluid and on the immersed boundary resulting
in the first casef l+1/2≡ 0. Accordingly, indicating byδu= û− ul Eq. (7) inside the flow
reads (

1− αl1t

2Re

d

dx2

)
δu = RHSl+1/2, (11)

or whend/dx2 is discretized spatially by a three-point stencil approximation

ai δui−1+ (1+ bi )δui + ci δui+1 = RHSl+1/2
i , (12)

whereai , bi , andci depend on the particular approximation used for the spatial derivative.
Note that now RHSl+1/2

i contains only quantities known from the previous step therefore
its evaluation is straightforward.

For Eq. (7) on the immersed boundary the computation of the forcing should be per-
formed; however, even if we do not know the value off l+1/2 we know that at the first
gridpoint outside the boundary we must haveûi = V̄ i (see Subsection 2.3). But̄V i is just a
linear interpolation betweenV i andûie with ie= i + 1 or ie= i − 1 depending on the di-
rection of the outward normal of the body (for example, for the case of Fig. 2c we haveie=
i + 1). This implies thatûi can be written aŝui = di V i − ei ûie with di and−ei the co-
efficients of the linear interpolation. By adding and subtracting the appropriate terms the
previous relation can be rewritten as

δui + ei δuie = di V i − ul
i − ei ul

ie = RHSl+1/2
i . (13)

The above equation has a structure similar to Eq. (12) therefore they can be solved together
without changing the solution procedure and without requiring the explicit evaluation of
the forcing.

Another point that needs to be clarified is the imposition of the forcing in the equation forû
instead oful+1. Although this problem does not pertain directly to the immersed boundary
technique but rather to its combination with the fractional step method, we believe that
some discussion is necessary since, if the correction step (8) changed the velocities on
the immersed boundary, the treatment of the body would be incorrect. Indeed for every
numerical simulation we have monitored the errors at the immersed boundaries and we
have seen that the modification produced by the correction step (8) was always negligibly
small (O(10−3− 10−4)) when compared to the velocity values themselves. A possible
explanation for this behaviour is the following: the velocity boundary conditions in a frame
moving with the mimicked (plane) surface would beuτ = un≡ 0, withτ andn the tangential
and normal directions, respectively. If it happened thatuτ = un≡ 0 then the forcing would
vanish since there is nothing to enforce and the momentum equation normal to the wall
would read

∂un

∂t
+ un

∂un

∂n
+ uτ

∂un

∂τ
= −∂p

∂n
+ 1

Re

∂2un

∂n2
+ 1

Re

∂2un

∂τ 2
. (14)



THREE-DIMENSIONAL COMPLEX FLOWS 59

Because of the boundary conditions, all the terms disappear except for the first and the last
on the left hand side. However, if the velocities are linearized at the immersed boundary
the term 1/Re∂2un/∂τ

2 also vanishes and the above equation yields∂p/∂n= 0. The same
arguments could be repeated for the tangential velocity componentuτ showing thatalong
the boundary it must result∂p/∂τ = 0. Note that this occurs only on the mimicked boundary,
while inside and outside the body the pressure behaves according to the flow dynamics. This
explains why, even if nothing is explicitly imposed on the pressure, it behaves correctly at
the walls as shown in Fig. 11.

On the other hand, given the relation (10) between thepandφwe can argue that∇φ≈ 0 at
the immersed boundary, explaining why in this region the velocity field remains essentially
unchanged by the correction step (8).

Before concluding this appendix we wish to mention an additional numerical experiment
in which for every1t the steps 7–10 where iterated until the difference betweenul+1 and
V was reduced to round-off error. This experiment was run for the case of the vortex ring
formation and, although the computational time considerably increased (about of a factor
6), the results were indistinguishable from those previously obtained.
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