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This work focuses on the direct numerical simulation of the pulsatile flow through
a bileaflet mechanical heart valve under physiological conditions and in a realistic
aortic root geometry. The motion of the valve leaflets has been computed from
the forces exerted by the fluid on the structure both being considered as a single
dynamical system. To this purpose the immersed boundary method, combined with
a fluid–structure interaction algorithm, has shown to be an inexpensive and accurate
technique for such complex flows. Several complete flow cycles have been simulated in
order to collect enough phase-averaged statistics, and the results are in good agreement
with experimental data obtained for a similar configuration. The flow analysis, strongly
relying on the data accessibility provided by the numerical simulation, shows how
some features of the leaflets motion depend on the flow dynamics and that the
criteria for the red cell damages caused by the valve need to be formulated using very
detailed analysis. In particular, it is shown that the standard Eulerian computation
of the Reynolds stresses, usually employed to assess the risk of haemolysis, might
not be adequate on several counts: (i) Reynolds stresses are only one part of the
solicitation, the other part being the viscous stresses, (ii) the characteristic scales
of the two solicitations are very different and the Reynolds stresses act on lengths
much larger than the red cells diameter and (iii) the Eulerian zonal assessment of the
stresses completely misses the information of time exposure to the solicitation which
is a fundamental ingredient for the phenomenon of haemolysis. Accordingly, the
trajectories of several fluid particles have been tracked in a Lagrangian way and
the pointwise instantaneous viscous stress tensor has been computed along the paths.
The tensor has been then reduced to an equivalent scalar using the von Mises criterion,
and the blood damage index has been evaluated following Grigioni et al. (Biomech.
Model Mechanobiol., vol. 4, 2005, p. 249).

1. Introduction
The replacement of heart valves is a safe and routine clinical practice worldwide,

adopted whenever the natural valve cannot be restored to its normal function. Since
the first successful heart valve replacement four decades ago, more than 50 valve
designs have been developed. Bileaflet mechanical heart valves have been used for
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over two decades and today remain the most widely implanted valve design due to
their durability, good bulk forward flow haemodynamics and a large orifice area
which generates small transvalvular pressure drops (see the review by Yoganathan,
He & Jones 2004, for a detailed discussion of the literature). Despite their widespread
clinical use, however, and the continuous design improvements, mechanical heart valve
implants still carry significant risks. In particular, they are still unable to eliminate
problems such as haemolysis, platelet activation and thromboembolic events arising
from the formation of clots and their subsequent detachment. In fact, red blood
cell damage and platelet activation, which eventually leads to thrombosis, can be
associated to the augmented mechanical stresses from turbulence, which is generated
around and downstream of the valve (Smith et al. 1972; Stein & Sabbah 1974). In the
studies by Ku & Liepsch (1986), Liepsch (1986) and Liepsch et al. (1998), the effects
of the mechanical stresses in the blood integrity are analysed taking into account also
the non-Newtonian nature of the fluid and the wall elasticity of arteries. When the
turbulent eddies are much larger than the blood cell diameter, the former surround
the blood cells completely and rotate or translate with the flow without causing much
damage. In contrast, when the Kolmogorov scales are similar in size to the blood cells,
they directly interact damaging the cell membranes (Liu, Lu & Chu 2000). Prevention
of these complications requires lifelong anti-coagulation therapy, inducing high level
of haemorrhage risk. On account of the previous arguments, it is clear that there
is a need for a better understanding of the valve fluid dynamics especially for what
concerns the turbulent flow features in order to assess the valve performance and the
subsequent risk of blood damage. Liepsch (1986) arrived at the same conclusion for
artificial grafts and vascular surgery.

The development of computational models in the mechanical heart valve field
is motivated by medical and economic concerns as well as efficiency. Sufficiently
accurate computational models, in fact, would serve as an inexpensive tool for
scientific and medical research that, combined with medical imaging and other
cardiovascular diagnostic techniques, would provide fundamental information for
the improvement in patient care. Despite the progress in numerical methods and the
forever increasing power of modern computers, the problem under consideration is
still very challenging owing to complex moving geometries, fluid–structure interaction,
intrinsic flow unsteadiness and very intense velocity gradients both in space and
time. The difficulty stems from the fact that the analysis includes phenomena
that are complex problems in their own right: The dynamics of the valve leaflets
drives the flow and vice versa, thus implying fluid–structure interaction. The wide
disparity in length scales, from the large structures with a scale comparable to
the valve orifice (27 mm) up to the flow in the hinge regions (0.1 mm) and even
further down to the Kolmogorov scale, requires a very fine spatial resolution over
a computational domain long enough to accommodate few of the largest scales. In
addition, the important time scales of the flow also vary widely from more than one
heart cycle (�1 s) to milliseconds when the valve closes, thus requiring very small
time steps and temporal integration for several heart cycles to extract converged
phase-averaged statistics. Transition to turbulence and subsequent relaminarization
within the same pulsatile cycle also demands sufficiently accurate and non-dissipative
numerical methods that will correctly capture the physics of the transitional
turbulence without introducing numerical viscosity or other artificial dissipation
mechanisms.

In the literature there are several studies dealing with the numerical simulation
of the flow in a bileaflet mechanical heart valve, and in most of them one or more
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simplifying assumptions are made. Many papers consider the leaflets fixed (Ge et al.
2005) or prescribe their motion using simplified kinematics (Yang & Balaras 2006) or
kinematics extracted from coordinated experiments (Dasi et al. 2007), thus avoiding to
cope with the fluid–structure interaction problem. Despite the simplifications made,
however, such studies provide useful insights into the complex dynamics of these
flows. Dasi et al. (2007), for example, provide a very detailed description of the flow
vorticity dynamics and comparisons with similar experiments. Other papers dealing
with the fluid–structure interaction refer to simplified geometries or two-dimensional
flows (Pedrizzetti & Domenichini 2006, 2007). In other studies, only part of the
cycle is considered (Myers & Porter 2003) and the numerical simulation imposes
symmetries (Cheng, Lai & Chandran 2004) so as to decrease the computational
cost. In addition, in the majority of the literature, turbulence models are used to
avoid the explicit simulation of the smallest scales (Grigioni et al. 2005; Yokoyama
et al. 2006; Alemu & Bluestein 2007, among many others); this substantially reduces
the nodes of the mesh and allows for larger integration time steps, but at the
expense of the information on the turbulence fine scales whose accurate description
is mandatory for the comprehension of the clinical phenomena mentioned above.
Recently, Borazjani et al. (2007) and Borazjani, Ge & Sotiropulos (2008) considered
the full three-dimensional flow dynamics in an axisymmetric aortic root, including
fluid–structure interactions. These investigations clearly demonstrated how important
is to consider the complete problem in order to understand the details of the flow
physics.

The present paper is an attempt to study the pulsatile flow in a mechanical bileaflet
heart valve without making simplifying assumptions on the flow physics and using
a realistic aortic root geometry. There are a number of reasons motivating this
effort: Many of the phenomena like platelet activation and red blood cell damage
are due to high levels of shear stresses produced in the near wake of the valve,
and the small-scale turbulence downstream, both of which depend on the way the
flow separates at the leaflets. As known from aeronautical applications (dynamic
stall), this separation is completely different for steady or moving bodies. Moreover,
the valve-closing phase has been implicated with thrombosis initiation owing to
intense low-pressure transients which are also responsible for platelet activation.
These phenomena can only be captured in a configuration where the valve leaflets
dynamically interact with the blood flow. In the present study, we conducted direct
numerical simulations (DNS) of the coupled fluid–structure interaction problem. In
such case the Navier–Stokes equations are solved without resorting to turbulence
models, while the motion of the leaflets and the resulting blood flow is a product
of their complex dynamic interaction. The coupled system of equations is integrated
for several cardiac cycles, in order to compute converged phase-averaged statistics.
The results are compared with analogous experimental data showing very good
agreement for both the leaflet dynamics and the mean and r.m.s. velocity profiles
downstream, demonstrating the accuracy of the proposed methodology. In terms
of exploring the extensive DNS database produced by the above computations,
we have focused on understanding the systematic delay in the closing of one of
them. In addition, we have tested some of the criteria employed for the evaluation
of the red cell damage which compute an equivalent scalar from the Reynolds
stress tensor in a Eulerian framework; we have shown that the viscous stress
tensor produces comparable effects in different flow regions, and that a Lagrangian
tracking of individual trajectories would be needed for a more realistic damage
evaluation.
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Figure 1. (a) Range of rotation of the leaflets. (b) Geometrical model of the
reproduced valve.

2. The problem
2.1. Numerical set-up

The valve model considered in the present simulations resembles the 27 mm Bicarbon
model by Sorin Biomedica Sorin-Group (2006), which is used in the experiments
by Cerroni (2006) and Romano (2008). The two leaflets are symmetric with respect
to the valve centreline parallel to the pivot axes and have a curved profile. In this
way, a balanced partition of the flow between the central orifice and the lateral ones
is obtained. Also, each of the three orifice areas introduces equal resistance to blood
flow, with the intent of minimizing turbulence and favouring laminar blood flow
on the outflow side. To optimize the organization of the flow, the housing of the
valve has an airfoil profile, which gently decreases in width from the inflow towards
the outflow side, favouring pressure recovery, guaranteeing surface continuity with
the suture ring and minimizing blood stasis close to the patient annulus. A smart
hinge design based on the coupling between two spherical surfaces with different
radii of curvature (leaflet pivot and hinge recess) allows the leaflets to rotate virtually
without sliding between the pivot and the slot within the housing. This introduces
a small axial translation � of the leaflets and a smaller variation of their relative
distance s (figure 1a). The friction to rotation is minimized and an uninterrupted
washing of the exposed surfaces is allowed.

In our numerical simulations, the geometry of the valve closely mimics the real
model (see figure 1b) except for the microscopic hinge mechanism that is not included.
Instead, we introduced a small gap in the hinge regions to mimic the continuous
washing through the effluent chimneys of the real mechanism. We allowed the leaflets
also for an axial translation in addition to rotation and, for the present combination
of valve model and aortic root geometry, this feature was necessary to obtain a
satisfactory agreement with the experiments (see § 3.2). The friction in the hinges
is neglected, since reliable data are not available and it should be anyway much
smaller than the moment produced by the flow. Our hinge gap size (340 μm) is larger
than that of the real valves (�250 μm), and this choice was necessary to alleviate
computational problems, like high backflow velocities when the valve was closed, and
adequate spatial resolution (six to seven nodes on the cross-stream direction of the
gap, in a grid with 6.6 million nodes). As shown in figure 1(a), the rotation arc of each
leaflet during the motion is fixed to 60◦: this means that each leaflet starts from an
angle of 10◦ with respect to the streamwise direction (fully open position) and stops
at an angle of 70◦ (fully closed position). It is worth noting that in the numerical
simulations, the actual fully closed position is limited to an angle of 68◦ with respect
to the streamwise direction: a small gap is always left between the leaflets and the
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Figure 2. Computational grid (only one in every four grid lines is plotted) around modelled
valve. The aortic root, the surfaces of valve housing and two leaflets are discretized using
triangular meshes (Stereo Lithography Format). In (b), the traces of the planes AA and BB
over which the flow is mainly analysed are reported.
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Figure 3. (a) Sketch of the valve/aortic root arrangement with the main lengths of the
problem. Main lengths: D = 1.26d , l = d , L = 5d , H = 1.14d , h = 0.26d . (b) Time evolution
during one cycle of the aortic flow rate.

housing in order to allow some backflow when the valve is closed and to avoid very
high values of the velocity in the quasi-closed configuration where cavitation might
become an issue.

The geometry of the aortic root exactly reproduces the model used for the
experimental investigations of Cerroni (2006) and Romano (2008) and closely
corresponds to the physiological case: at the outlet of the valve, the three sinuses of
Valsalva are placed at equispaced radial positions (see figure 2). The valve is mounted
in an intra-annular configuration, meaning that the valve housing does not extend into
the sinuses of Valsalva, and in an asymmetric orientation with respect to the sinuses
(figure 2b). A sketch of the valve/aortic root arrangement is given in figure 3(a),
together with the main dimensions of the problem. The inflow velocity profile is
assigned by a hyperbolic tangent function with stretching parameter γ =60, which
yields a flat velocity distribution in the bulk and accommodates the no-slip boundary
condition at the aortic wall within a layer of thickness λ/d = 1/

√
Re � 1.2 × 10−2. This

velocity profile is modulated in time to mimic the physiological flow rate produced
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by the heart in the left ventricle (figure 3b), which was used in the experiments
by Cerroni (2006) and Romano (2008). The cycle duration was set at 866 ms,
corresponding to about 70 beats min−1 (natural heart rate at rest). The mean flow
rate was adjusted to about 5 lmin−1 with a peak flow rate of about 28 lmin−1. It is
important to note the presence of a small leakage flow in the second part of the cycle
(t > 400 ms), which is typical of bileaflet mechanical heart valves, occurring from the
hinges gaps. These are typical physiological conditions under an adult aortic valve
operates. It is worth mentioning that the present configuration, which consists of a
Sorin Biomedical bileaflet mechanical valve and a physiological aortic root with three
Valsalva sinuses, has been chosen because of the availability of detailed experimental
measurements that will be used for validation. In clinical practice, however, sometimes
the sinuses are sacrificed to produce an axisymmetric cylindrical aortic root (Bental
procedure), indicating that axisymmetric geometries should also be considered for
completeness.

Let B be the aortic root and the valve housing both rigid and fixed in space, while
B1 and B2 are the two valve leaflets which can rotate about their own pivots o1 and
o2, which in turn can axially translate within a range �. If Γ is the time-dependent
fluid domain, the governing equations read

∂u
∂t

+ ∇ · (uu) = −∇p +
1

Re
∇2u + f , (2.1)

∇ · u = 0, on Γ

Ii

d2θi

dt2
= Ti, Mi

d2zi

dt2
= Fi for Bi with i = 1, 2. (2.2)

Equations (2.1) are the Navier–Stokes equations for an incompressible viscous
Newtonian fluid and they determine the flow whose velocity vector is u, p is the
pressure, f is the direct forcing of the immersed boundary method (Fadlun et al.
2000) and Re is the Reynolds number later specified. The fluid model is Newtonian,
since the blood in large arteries behaves accordingly (Nichols & O’Rourke 1990).
The whole blood may be regarded, from a mechanical point of view, as consisting of
flexible red cells suspended in a Newtonian fluid, the plasma (Caro et al. 1978). When
the characteristic length of the problem becomes comparable with the size of red
cells, their flexibility plays an important role in determining the viscosity (rouleaux,
which are stacks of blood cells, are known to form at low shear rates), and this leads
to a non-Newtonian behaviour under specific conditions. Several studies with human
blood (Whitmore 1968) have shown the variation of the effective viscosity (the ratio
of measured viscous stress to the rate of strain in a laboratory viscometer) with
the shear rate. When the latter is about 100–1000 s−1 (depending on the hematocrit
level), which is typical for many blood vessels in vivo, the non-Newtonian behaviour
becomes irrelevant and the effective viscosity approaches an asymptotic value. Only
with the reduction of the shear rate, the effective viscosity starts increasing, until for
a shear rate smaller than 1 s−1 it rises extremely steeply; such small values, however,
are characteristic of the slow flows in capillaries, whose diameter can be even smaller
than that of a red cell, and are not relevant to our study.

Equations (2.2) describe the motion of the leaflets through their angular and axial
positions by the dimensionless moments of inertia Ii about the pivots and the masses
Mi , Ti and Fi are, respectively, the tilting moments about the pivots and the axial
forces resulting from the viscous stress tensor τττ , and the pressure integrated over the
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leaflets surfaces Si . Their specific expressions are

Ti =

∫
Si

[(τττ · n − pn) × r] · x̂ dS and Fi =

∫
Si

(τττ · n − pn) · ẑ dS i = 1, 2, (2.3)

with n the outer normal to the surface Si of the ith leaflet, r the vector given by the
distance from the pivot axis to the surface element dS, x̂ the unit vector aligned with
the pivot axis and ẑ its axial counterpart. It is worth mentioning that Ti and Fi depend
explicitly on p and u, the latter through τττ , but implicitly also on θj , dθj/dt , zj and
dzj/dt for j =1, 2 which determine the position in space of the leaflets, the domain Γ

and the boundary conditions on the immersed boundaries, and therefore the forcings
f in (2.1). We wish to stress that the computation of forces and moments through
(2.3) might present accuracy problems in the immersed boundary context, since the
leaflet surfaces are not coordinate surfaces and quantities need to be interpolated.
Nevertheless, we will show in § § 2.2 and 3.1 that the results are largely independent
of the mesh size and agree very well with similar experiments, thus confirming the
reliability of the method.

The incompressible Navier–Stokes equations are discretized in space using second-
order-accurate central differences in conservative form and in cylindrical coordinates.
The resulting system is inverted using a fractional-step method, where the viscous
terms are computed implicitly and the convective terms explicitly. The large-banded
matrix associated with the elliptic equation is reduced to a penta-diagonal matrix
using trigonometric expansions (FFTs) in the azimuthal direction, and the resulting
Helmholtz equations are then inverted using the FISHPACK package (Swartzrauber
1974). A hybrid low-storage third-order Runge–Kutta scheme is used to advance
the equations in time; this procedure has the advantage of requiring only a two-
level storage, like common second-order schemes, while benefiting from an increased
stability limit and a smaller discretization error. All the simulations have been run
with a fixed Courant number CFL =0.25, thus having a variable time step �t which
is adjusted accordingly (figure 4a); the use of a non-uniform �t did not affect the
time accuracy of the method, since the third-order Runge–Kutta is a ‘self-starting’
integration scheme which does not need information from the previous times to
advance a new �t . There is an evident computational advantage in the use of a
variable time step for the integration of the present flow; in fact, it will be shown
in the following sections that the opening and closing of the leaflets are extremely
fast events that need small time steps to be accurately simulated even if they occupy
only about 20 % of the cycle. On the other hand, for more than 50 % of the cycle
the mean flow is essentially zero, the valve leaflets remain still and the flow can be
integrated with much larger time steps.

More details on the Navier–Stokes solver are given in Verzicco & Orlandi (1996)
and Fadlun et al. (2000).

The immersed boundary technique used in this work is based on that proposed
in Fadlun et al. (2000) and Iaccarino & Verzicco (2003) and extended in Cristallo &
Verzicco (2006) for fluid–structure interaction problems; in the latter reference, details
of the procedure can be found, together with benchmarks and validation checks. It is
worth noting that, in the immersed boundary framework, the motion of the leaflets
requires the use of the geometrical preprocessor at each time step, in order to tag the
new position of the computational cells with respect to the body: this overhead is
about the 20 % of the total computational time. The procedure is more accurate and
less expensive than a standard body-fitted approach where, due to the large leaflet
motions, it is difficult to adapt the fluid mesh maintaining a proper quality, and the
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Figure 4. Time-step size (a), number of FSI iterations (b) and relative error (c) during a
cardiac cycle. (d) Convergence history corresponding to three instants of the cycle with four
iterations. In panels (a)–(c) the curve of the flow rate (in arbitrary units) is reported by a
dashed ( ) line.

change in topology during remeshing requires interpolation techniques; this not only
introduces artificial diffusivity, but is also very time-consuming, especially for complex
three-dimensional problems.

A strong coupling scheme is employed for the solution of the system (2.1)–(2.2)
where the fluid and the structure are treated as elements of a single dynamical
system, and all governing equations are integrated simultaneously in the time domain.
This complication arises from the fact that the prediction of the flow field and of
the hydrodynamic loads requires the knowledge of the motion of the structure and
vice versa. For this reason, Hamming’s fourth-order predictor–corrector method as
described in Yang, Preidikman & Balaras (2008) is used to integrate (2.2) through
an iterative scheme until convergence is achieved. More in detail, (2.2) are expanded
to a system of first-order ordinary differential equations in the variables θi , θ̇i , zi

and żi with the generalized loads on the right-hand side Lij , i = 1, 2 and j = 1, 4.
The fluid solver is then coupled with the structural solver as follows: (a) find the
predicted location and velocity of the body using (2.2), with forces and moments
computed from u and p at the previous time step; (b) find the predicted fluid velocity
and pressure fields using (2.1), with the boundary conditions provided by step (a),
and compute the new resulting loads on the structure through (2.3); (c) compute the
corrected location and velocity of the body using (2.2); (d ) check for convergence that
we assessed with the leaflets angular velocity, since it was the most sensitive quantity.
If ej = |c θ̇j −p θ̇j |, j = 1, 2 is greater than the prescribed tolerance ε, repeat steps (b)
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to (d ) and check again convergence with the predicted angular velocity updated as
pθ̇j = cθ̇j , and the new corrected angular velocity cθ̇j recomputed from (2.2) (the same
operations are also performed on θi , zi and żi). If convergence is achieved, find the
final fluid pressure and velocity fields from the Navier–Stokes equations. In all our
computations, a tolerance of ε = 10−4 was used. The number of iterations required
for convergence at each time step varied from 1 to 4, depending on the phase of the
dynamics (see figure 4b); convergence is typically more difficult during the opening
and closing phases when the leaflets rotate (and translate) very rapidly, while the
criterion is satisfied already at the first iteration when the leaflets remain still or move
slowly.

As noted by Borazjani et al. (2008), the very low moment of inertia of the
valve leaflets, owing to the added mass effect, induces numerical instabilities in
the fluid–structure interaction algorithm that compromises its stability and prevents
it from converging. Le Tallec & Mouro (2001), Causin, Gerbeau & Nobile (2005) and
Borazjani et al. (2008) suggested that an under-relaxation of the generalized loads is
necessary for the solution of the structural part, and the same strategy has been indeed
adopted also in the present study by using the expression Lij = γLl

ij + (1 − γ )Ll−1
ij

with γ = 0.9, l the actual iteration level and l − 1 the previous one. We wish to
point out that, unlike Borazjani et al. (2008) in which the under-relaxation parameter
γ was dynamically computed during the simulation, in the present study, γ was
maintained fixed in time and its value has been chosen by a trial-and-error process
using preliminary coarse numerical simulation. Nevertheless, although the value of
γ might not be optimal, the convergence of the fluid structure interaction scheme
was always achieved with an error below the prescribed tolerance (figure 4). We
conjecture that part of the robustness of the method is due to the adaptive time step
that automatically reduces its amplitude when the leaflets rotate rapidly (figure 4a);
this yields a starting error, in the predictor step of the fluid–structure interaction
procedure, which is more or less constant during the flow cycle and which is decreased
below the tolerance ε by a limited number of iterations (figure 4d ).

As a partial confirmation of the above argument, we note that the third-order
Runge–Kutta scheme has a theoretical stability limit of CFL =

√
3 that, with the help

of the viscous terms, can be extended up to CFL � 2. Nevertheless, we have run our
simulations using CFL =0.25, since we have noted that larger stability parameters
while increasing proportionally the time step size also increased the initial error of
the fluid–structure interaction algorithm that needed more iterations to converge; this
resulted in an overall increase of the CPU time.

2.2. Flow parameters and simulation grid independence

We have assumed as main scaling quantities the inflow diameter d = 27 mm and
the bulk velocity at the peak inflow U = 0.81 m s−1 which with a blood kinematic
viscosity ν = 3.04 × 10−6 m2 s−1 yield a Reynolds number Re = Ud/ν = 7200. The
basic time unit is given by tb = d/U =33.3 ms, so that the heart cycle of 866 ms turns
out to be T � 26tb. Concerning the leaflets made of pyrolytic carbon, with density
of ρl = 2000 kg m−3, whereas the blood density is ρb = 1060 kg m−3. In dimensional
units, each leaflet has a mass of 4.086 × 10−4 kg and a moment of inertia with respect
to the pivot axis of 7.947 × 10−9 kg m2 that when scaled, respectively, with ρbd

3 and
ρbd

5 become Mi =2.076 × 10−2 and Ii = 2.77 × 10−4, i = 1, 2 used in (2.2). Additional
details of the computational set-up are given in figure 3(a) and in its caption where
the values are reported.
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Figure 5. Leaflets kinematics for the coarse ( ), fine ( ) and finest ( ) grids. The
variable Λ is defined as Λ= (αopen − α)/(αopen − αclosed ). The flow rate is reported by a dotted
( ) line.

The aortic root, the valve housing and the leaflets are discretized with unstructured
triangular meshes (Stereo Lithography Format, STL) and are embedded into the
background cylindrical structured grid. Three computational grids are used, in order
to test the grid independence of the results. The coarse mesh employs 129 × 103 × 189
nodes, the fine grid 193 × 137 × 250 nodes, while the finest has 251 × 147 × 322 nodes
in the azimuthal, radial and axial directions, with about 2.5, 6.6 and 11.9 million
points, respectively. Figure 2(a, b) shows the fine grid, where only one in every four
grid lines is plotted. All the grids are clustered near the valve, where rich vorticity
dynamics is observed.

Except for the finest grid that was used only for evaluating grid independence and
was advanced for three periods, 10 cardiac cycles are computed for all other cases.
Each cycle is discretized by a variable time step ranging from �tmin = 10−4tb (about
3 μs), occurring at the flow rate peak and when the valve closes, to a maximum value
of �tmax = 7.5 × 10−3tb, (about 250 μs) during the diastole. It is worth noting that the
numerical temporal resolution is very high compared to the time interval between
two subsequent frames used in the PIV measurements of Cerroni (2006) that varied
from 400 up to 3000 μs. The CPU time for the computation of each complete cycle
on the fine mesh was about 60 h on a single P-IV processor, equipped with 1Gb of
RAM.

First, the ensemble-averaged flow features of the numerical simulations on the
different grids are compared, in order to show grid independence of the averaged
results. In particular, figure 5 shows the phase-averaged angular position of the
leaflets, and figure 6 the mean and r.m.s. streamwise velocity profiles in the plane AA
at a distance of 5.41 mm for three different representative times during the cycle. The
leaflet kinematics are identical on all grids. The same applies to the mean velocities for
the two finer grids. Note that in figure 6 the r.m.s. velocity profiles for the finest grid
are not included due to the limited statistical sample. The comparison of the other
two grids is however very satisfactory, and the same kind of agreement is obtained
for other quantities or sections. Finally in figure 7 also, the azimuthal (out-of-plane)
vorticity contours for the same instants as figure 6 are reported for the fine and
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Figure 6. Phase-averaged streamwise velocity profiles (a) and r.m.s. (b) in the symmetry plane
AA (in m s−1) at a distance equal to 5.41 mm from the fully open leaflets’ tip for the coarse
( ), fine ( ) and finest ( ) grids. The r.m.s. velocity profile is missing for the finest
grid because that simulation has not been advanced in time long enough to get converged
statistics.

finest grids, showing that not only the velocity and its statistics are grid-independent,
but also the velocity gradients. Hereafter, in the discussion of the results and in the
comparison of the experiments, only the data obtained on the intermediate mesh will
be used.

3. Results
3.1. Data validation

As a first step, the numerical results have been validated by a comparison with
an experiment performed at the University of Roma ‘La Sapienza’ in the context
of the SMART-PIV IST-2002-37548 European Project by the group of Professor
G. P. Romano (Romano 2008). All the problem details, from the valve model to the
geometry of the aortic root and the flow conditions, have been set in the numerical
simulation in order to replicate, as close as possible, the experimental conditions.
In figure 8, the time evolution of the leaflets angular position is shown, together
with the aortic flow rate for reference. It should be mentioned that the data refer to
phase-averaged values since, although small, cycle-to-cycle differences are present. The
experimental results are extracted from a high-speed camera recording (at 1000 fps)
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Figure 7. Instantaneous vorticity contours in the symmetry plane AA (in s−1) for the fine
(a) and finest (b) grids. Vorticity ranges from −500 s−1 to 500 s−1.

of about 10 cycles. It is observed that the main dynamics is well reproduced by
the numerical simulation both in the opening and closing phases. In the latter, in
particular, a time delay in the closing of one of the leaflets is evident (the upper
half in figure 2b), and it is of the order of 20 ms. This is a result of the asymmetric
mounting of the valve with respect to the Valsalva sinuses (figure 2b) and will be
discussed more in detail in a successive section. As a further confirmation of the
above statement, it is worth mentioning that in the paper by Borazjani et al. (2008),
in which the aortic root is axisymmetric, the opening and closing dynamics of the
leaflets is perfectly synchronous, apart from the minor differences induced by the
three-dimensional nature of the flow.

Some instantaneous snapshots of the experimental results are given in figure 9
where the asynchronous closing of the leaflets is also evident. In figure 9(d ), we
show a comparison of the position of the right leaflet with that in the fully open
configuration of figure 9(c), which is indicated with a dashed line. Although the tilting
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Figure 8. Time variation of the phase-averaged leaflets angular position Λ= (αopen − α)/
(αopen −αclosed ) and flow rate ( ): comparison with experimental results (symbols) of Cerroni
(2006); � for leaflet 1 of figure 3, and � for leaflet 2.

(a) (b) (c)

(d) (e) ( f )

Figure 9. Instantaneous snapshots of the valve leaflets dynamics from an experimental
visualization: (a) t � 0 ms, (b) t � 30 ms, (c) t � 60 ms, (d ) t � 250 ms, (e) t � 310 ms,
(f ) t � 340 ms. Courtesy of G. P. Romano, reproduced with permission.

angle does not change appreciably, there is a backward axial translation, allowed by
the hinge mechanism, which turned out to be very important in the closing delay and
that will be investigated in the next section.

Figures 10 and 11 show the phase-averaged streamwise velocity profiles with their
r.m.s. fluctuations at different times (start opening, SO; end opening, EO; flow rate
peak, FP; start closing, SC; end closing, EC) in the symmetry plane (AA in figure 2b)
in two sections downstream of the valve, at a distance equal to 5.4 and 23.3 mm
from the fully open leaflets’ tip, respectively. Also in this case, the agreement with the
experiments is generally good, although there are some small discrepancies that are
probably due to the limited statistical sample in the simulations. In particular, statistics
for the DNS were accumulated over 10 pulsatile cycles, while the experiments were
ensemble-averaged for over 200 cycles; considering the intrinsic flow unsteadiness and
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Figure 10. Phase-averaged streamwise velocity profiles (a) and r.m.s. (b) in the symmetry
plane AA (in m s−1) at a distance equal to 5.41 mm from the fully open leaflets’ tip. :
experimental results of Cerroni (2006); : present numerical results (SO: start opening;
EO: end opening; FP: flow rate peak; SC: start closing; EC: end closing).

the cycle-to-cycle variations, this can account for some of the differences, especially
in the r.m.s. profiles that need more samples to converge. We should also note
that, during the accelerating systolic phase the flow remains essentially laminar and
repeatable from cycle to cycle (see also Dasi et al. 2007), and therefore the averaged
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Figure 11. Phase-averaged streamwise velocity profiles (a) and r.m.s. (b) in the symmetry
plane AA (in m s−1) at a distance equal to 23.3 mm from the fully open leaflets’ tip. :
experimental results of Cerroni (2006); : present numerical results (SO: start opening;
EO: end opening; FP: flow rate peak; SC: start closing; EC: end closing).

and r.m.s. fields should statistically converge more rapidly. This is evident from figures
10 and 11 where the comparison with experiments is generally better for the SO, EO
and FP instants than for the SC and EC times, the last two being in the decelerating
part of the flow rate.
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In PIV measurements, to eliminate localized errors in the velocity vectors, it is a
common practice to correct the raw acquired data with a smoothing filter; in the
present experimental results, this was achieved by a 3 × 3 point averaging in which
each vector was averaged with the in-plane eight surrounding vectors. In order to
allow a close comparison between numerical simulation and experiments, we have
adopted a similar procedure on the former results indeed obtaining a better agreement.
We wish to stress, however, that the filtering in the two cases is not exactly the same
owing to the different uniform spatial resolution of the experimental PIV data and
the non-uniform mesh in the numerical simulations. Finally in the experimental set-
up, image distortions in the flow region corresponding to the sinuses of Valsalva
were present due to imperfect refractive index matching between the fluid (aqueous
glycerin–water solution, 40 % glycerin) and the model (transparent Plexiglas). These
distortions might produce localized alterations of the amplitude and shape of the
velocity profiles and derived quantities. In Brücker et al. (2002), a similar problem
was mentioned and an ad hoc correction was conducted by mapping the distorted
image of a square test grid back to its original shape. In our reference experimental
data, this correction was not applied to avoid additional complications (G.P. Romano,
personal communication).

As an aside we also note that in the PIV measurements there is a different time
interval between two subsequent frames, that varied from 400 up to 3000 μs and from
which the velocity field is computed, with respect to the numerical simulation whose
time step size was in between 3 and 250 μs; this is another difference that should be
kept in mind when comparing the results.

3.2. Leaflets dynamics

As already mentioned, the hinge mechanism of the valve yields very complex
kinematics, since each pivot is independent of the other and each leaflet is allowed to
translate and rotate about an axis which is not fixed in space. In the computations,
we initially considered the simplest configuration by assuming that the leaflets could
only rotate about fixed axes, whose position was symmetric about a central plane,
and the results were only partially in agreement with the experiments. Looking
more carefully at the experimental results, we noticed that the leaflets also had an
appreciable translation in a direction mostly parallel to the main fluid motion; thus,
in the second set of simulations, we have given the leaflets the possibility to axially
translate within a given range. As shown in figure 12, this addition was important in
matching the experimental results especially in the final part of the closing phase. It
is worth mentioning that, in contrast to the present study, the results of Borazjani
et al. (2008) show that in their case the axial translation of the leaflets is not an
essential feature to obtain a good agreement with the experiments. On one hand, it
suggests that this might be an issue mainly related to the specific combination of the
present heart valve design with the geometry of the aortic root, nevertheless it also
evidences the extreme sensitivity of the flow to small kinematic or geometric details
of the problem which therefore cannot be disregarded a priori.

Looking at figure 12, the leaflets dynamics can be summarized as follows: The
opening phase (SO) starts at the beginning of the systole when the flow starts
accelerating, and ends before the conclusion of the flow acceleration by reaching the
fully open position (EO). The leaflets remain fully open during the peak of the flow
rate curve (FP). The closing phase (SC) starts only at the beginning of the steepest
flow deceleration and ends at the minimum (negative) of the flow rate by reaching the
fully closed position (EC). From figure 12 it is evident that the valve is already fully
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Figure 12. Time variation of the phase-averaged leaflets angular position Λ= (αopen − α)/
(αopen −αclosed ) and flow rate ( ) for the valve with axial displacement ( ) and without
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Figure 13. Opening phase: time variation (in ms) of the phase-averaged leaflets’ angular
position Λ= (αopen − α)/(αopen − αclosed ) (top), angular velocity (middle) and axial displacement
(bottom). (a) Leaflet 1, (b) leaflet 2. ( ) valve with axial displacement and ( ) without
axial displacement.

open when the flow rate reaches about three-fourth of the peak value, and it maintains
this configuration for slightly less than 20 % of the pulsating period T . The opening
phase of the valve lasts about 8 % of T , while closing lasts approximately 14 % of
T , and strongly depends on the temporal variation of the flow rate. In particular, the
closing time depends on how steep is the flow-rate decrease, since it is related to the
adverse pressure gradient that, in turn, determines the leaflets angular acceleration. It
is worth mentioning that from preliminary simulations we have observed the opening
of the leaflets to have little sensitivity to the waveform of the flow-rate increase while,
in contrast, the closing phase was strongly dependent either on the slope of the flow
rate descent or on the minimum value of the curve (regurgitation).

Figures 13 and 14 illustrate in detail the behaviour of the leaflets during the
opening and closing phases, and their dynamics is compared with the case without
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axial translation. The opening begins with a fast acceleration of the leaflets that
reaches the maximum of the angular velocity after only one-third of the total opening
time (figure 13). If axial translation is allowed, the leaflets start moving forward
without appreciable rotation until they hit the hinge constraint, the angular velocity
abruptly rises and a maximum is attained that exceeds the value without translation.
As the valve opens, the leaflets rotate to align with the axial flow and their local
linear velocity tends to become orthogonal to the main stream; as a consequence, the
fluid–structure interaction produces a resistant moment that decreases the angular
velocity. In the meanwhile, the mean flow velocity keeps on increasing and before
reaching the fully open position, there is again a change in the acceleration sign
that remains positive until the leaflets are stopped by the constraints. The closing
phase, on the other hand, follows a different dynamics: It starts with small angular
velocities that constantly increase, reach higher values than in the opening phase
and keep accelerating until the leaflets hit the housing and reach the fully closed
position. Again, the axial movement influences the leaflet angular velocity leading to
a noticeably different behaviour especially for one of the leaflets, anticipating the time
of closure.

A comparison of figures 13 and 14 shows that the end of the opening occurs with
small angular velocities, while at the end of the closing the angular velocity attains
the peak value, thus implying that in the latter case the modelling of the rebound
of the leaflets at the housing might be of some relevance. Indeed, following Cheng
et al. (2004), we have performed several preliminary simulations using a restitution
coefficient of 0.5 which gave the angular velocity after the rebound ωa = −ωb/2 with
ωb the angular velocity just before the rebound. This approximation leads to a leaflet–
housing interaction as a sequence of damped rebounds until the kinetic energy of the
leaflet decreases to a negligible level, however its accurate time description required
very small time steps that significantly added to the cost of the simulation. In
addition, in some cases a ‘resonance’ phenomenon between the leaflets was observed,
which produced high-frequency oscillations about the fully closed position. Although
the consequent angular displacements were below 0.1◦, resolving those oscillations
required very small time steps even in the range 0.5T � t � T , where the absence of a
mean flow and the essentially steady geometrical configuration would allow a more
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efficient temporal integration. We therefore set the restitution coefficient to zero. We
should note that although this choice does not affect the overall leaflet dynamics,
it could make a big difference if one is interested in noise production or cavitation
generated in the final part of the closing phase.

3.3. General flow features

Instantaneous streamwise velocity contours and phase-averaged velocity profiles at
different sections downstream of the valve in the planes AA and BB are reported
in figures 15 and 16, respectively, for some representative times during the pulsatile
cycle. At the beginning of the cycle (SO) the flow is essentially stagnant owing to
the absence of mean flow for more than half period of the preceding cycle that has
allowed the turbulence to settle down; the residual vortical structures however are
rapidly washed away by the incoming flow as the flow rate increases. During the early
opening phase the leaflets translate axially and start rotating to form a time-varying
three-orifice configuration with strong shear layers shed from the valve housing, and
the tips of the leaflets as shown by the panels SO and EO of figures 15 and 16. After
the leaflets reach the fully open position, the flow rate keeps increasing up to the peak
value (FP), thus strengthening the shear layers that become unstable. The bulk of
the flow however is still laminar owing to the flow acceleration that prevents
turbulence from developing. At this stage the recirculations within the Valsalva sinuses
have the maximum intensity, and the mean flow downstream of the valve has the
distinctive three-jet signature. Though essentially laminar, the shear layers released
from the leaflets have a strong flapping motion that further enhances the flow
unsteadiness. This is especially true for the upper leaflet whose wake interacts with
the recirculation in the sinus of Valsalva and starts a small-scale production leading
to turbulence when the flow rate decreases and an adverse pressure gradient starts
to develop. The valve starts closing when the flow rate is just above one-half of the
peak value, and the instantaneous as well as the mean flow are asymmetric in the two
leaflets. This asymmetry is reflected also by the pressure field which causes the lower
leaflet to close before the other. As the flow rate also keeps decreasing, the upper
leaflet closes and the fully closed position is attained at the negative peak of the
flow rate. In this configuration, most of the flow leaks through the small gaps that
mimic the washing of the hinges, although we should keep in mind that the leaflets
are stopped 2◦ before the complete closing and some minor leakage occurs also from
the gaps between the leaflets and between each leaflet and the valve housing. After
this phase the turbulence in the bulk starts decaying owing to the absence of forcing
provided by the mean flow and the decay continues up to the beginning of a new
cycle. The overall behaviour discussed above is in agreement with the computations
by Dasi et al. (2007) and Borazjani et al. (2008), despite the geometrical differences
of the heart valve and the aortic root.

It is important to note that the closing of the valve starts during the diastolic part
of the cycle when the flow rate decreases although it is still positive (t � 250 ms in
figure 3b). Due to the fact that the flow is pulsatile, it is possible to have a forward
flow in the bulk of the aortic duct with a backward current close to the wall that
induces strong retrograde jets within the Valsalva sinuses (figure 17); these jets are
known to be responsible for the flow in the coronary arteries that depart from two
of the sinuses and that might be substantially altered by the replacement of the
valve. The evaluation of the persistence and strength of these jets, depending on the
geometry of the remodelled aortic root as well as the position and the orientation of
the replaced valve, is an important information that would be particularly helpful in



278 M. D. de Tullio, A. Cristallo, E. Balaras and R. Verzicco

S.O.

(a) (b)

E.O.

F.P.

S.C.

E.C.

1m s–1

1m s–1

1m s–1

1m s–1

1m s–1

Figure 15. Numerical results in the plane AA: (a) instantaneous streamwise velocity contours;
(min= −0.8 m s−1, max = 1.8 m s−1, �= 0.05 m s−1); (b) phase-averaged streamwise velocity
profiles. (SO: start opening; EO: end opening; FP: flow rate peak; SC: start closing; EC: end
closing).

surgery and could be easily obtained by numerical simulations. Another important
point is that, as already mentioned, the valve is fully closed at the negative peak of the
flow rate (t � 330 ms in figure 3b), therefore only beyond this time a realvalve leakage
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Figure 16. Numerical results in the centreplane BB: (a) instantaneous streamwise velocity
contours (min= −0.8 m s−1, max = 1.8 m s−1, �= 0.05 m s−1); (b) phase–averaged streamwise
velocity profiles. (SO: start opening; EO: end opening; FP: flow rate peak; SC: start closing;
EC: end closing).
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Figure 17. Instantaneous streamwise velocity vector snapshot in the section BB at
t � 280 ms of the cycle showing the backward jets in the Valsalva sinuses.

occurs. The negative flow rate before the closing of the valve is instead related to the
retrograde rotation of the leaflets and it is often referred to as ‘false regurgitation’
(G. Pedrizzetti, personal communication).

As a further validation, we have computed the mean systolic pressure difference
as the time-averaged pressure jump across the valve during the systolic part of the
cycle (0 � t � 300 ms); in our simulations, for a mean flow rate of 5 l min−1 we have
found a value of about 220 Pa corresponding to 1.6 mmHg which agrees well with
the values reported by Sorin-Group (2006) in the range 1.2–1.8 mmHg, respectively
for a flow rate 4.5–6.5 l min−1.

3.4. Identification of peak stresses

In this section, we wish to illustrate another aspect of the problem in which the
developed numerical tool can be efficiently employed to provide useful information.
As mentioned in the introduction, high levels of stress are responsible for haemolysis
and platelet activation. The haemodynamics compliance of the prosthetic heart valves
is usually assessed by performing in vitro experiments, where two-component velocity
data in significant planes, such as AA and BB of figure 2, are measured and the
in-plane turbulent stresses are computed. However, as discussed in Fontaine et al.
(1996), the flow field can vary from locally two-dimensional to completely three-
dimensional with complex structures and, since the peak Reynolds stress is not
invariant under coordinate system rotation (Hinze 1975), the two-dimensional analysis
can underestimate the normal and shear stresses, depending on the valve model and
aortic root geometry. Numerical simulations, in this respect, can complement the
experiments and provide fully three-dimensional detailed information and statistics
through a complete map of the regions of high stresses. Following Popov (1976), the
turbulent stress analysis requires the evaluation of the full Reynolds stress tensor (that
is real valued and symmetric) for every point. It is well known that in the principal
coordinate system, the Reynolds stress tensor can be expressed in diagonal form with
the three principal normal stresses σ1, σ2 and σ3 on the diagonal, ordered usually as
σ1 � σ2 � σ3. The determination of the principal normal stresses involves the solution
of a third-order polynomial equation of the form

σ 3 − l1σ
2 + l2σ − l3 = 0, (3.1)
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where l1, l2 and l3 are the three stress invariants of the tensor

l1 = u′u′ + v′v′ + w′w′, (3.2)

l2 = u′u′ ∗ v′v′ + v′v′ ∗ w′w′ − u′v′2 − v′w′2 − u′w′2, (3.3)

l3 is the determinant of the Reynolds stress tensor, and u′, v′ and w′ are the fluctuations
in velocity vector components in the three Cartesian directions. The principal shear
stresses, aligned with planes that bisect the principal normal stress directions, are
given by the following equation:

σij =
σi − σj

2
, i, j = 1, 2, 3, (3.4)

and then the maximum turbulent shear stress acting on a surface element is
(Malvern 1977)

T SS3D
max = σ13 =

σ1 − σ3

2
. (3.5)

If only two-dimensional measurements are available, the same approach can be
followed considering a two-dimensional space. In this case, (3.1) reduces to a second-
order polynomial equation and the maximum shear stress is

T SS2D
max =

σ1 − σ2

2
=

√(
u′u′ − v′v′

2

)2

+ u′v′2. (3.6)

If the flow field shows one dominant velocity component, with the other two
components negligible, the two-dimensional analysis can give similar results with
respect to the three-dimensional one. In our case, however, the curvature of the
leaflets combined with the asymmetric mounting scheme generates a complex three-
dimensional flow, with the three-velocity components having comparable magnitude;
the use of a two-dimensional analysis can therefore underpredict the maximum shear
stresses locally. In investigating this conjecture, both two-dimensional and three-
dimensional analyses are conducted near the maximum flow rate (FP), when, as
shown by Woo & Yoganathan (1985), the largest measured Reynolds stresses occur.
The turbulent stresses are defined by phase averages over all the computed cycles.
Figure 18 shows the T SSmax maps for two-dimensional and three-dimensional cases,
in the planes AA and BB, while figure 19 shows T SSmax profiles in a representative
section at a distance equal to 16.0 mm from the fully open leaflet tip in the same
planes (corresponding to the centre of the Valsalva sinuses). Comparing figures 18
and 19, it is evident that although the two-dimensional analysis reasonably captures
the regions of high shear stress, it underpredicts the peaks severely (47 % and 45 %,
respectively in planes AA and BB). This is especially true when the flow expands into
the three sinus cavities, creating complex three-dimensional structures.

It should be noted that turbulent stresses, which are convective accelerations, are in
fact only part of the solicitation on a fluid particle, the other part being the viscous
stresses. The former are usually dominant in the bulk of the flow, but the latter prevail
close to solid surfaces. It should also be mentioned that, in the bulk, viscous and
turbulent stresses act on different length scales, namely in the dissipative and inertial
ranges of the turbulent spectrum, respectively. At the present Reynolds number
(Re = 7200) with a main length scale of d = 27 mm, we can expect a Kolmogorov
dissipative scale η ≈ 35 μm and a dissipative range extending up to lengths of ≈2 mm
(Pope 2000). On the other hand the turbulent shear stresses are known to be relevant
mainly in the inertial range with a spectrum that decays with the wavenumbers more
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Figure 18. Comparison of the computed maximum value of the turbulence shear stress (in
Nm−2) in the symmetry plane AA and in the centreplane orthogonal to the symmetry plane
BB at peak of flow rate. (a) Two-dimensional analysis; (b) three-dimensional analysis.
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Figure 19. Comparison of the computed maximum value of the turbulence shear stress
profiles in (Nm−2) at a distance equal to 16.0 mm from the fully open leaflets’ tip at peak of
flow rate. (a) Plane AA; (b) plane BB. three-dimensional analysis; two-dimensional
analysis.

rapidly than the energy spectrum. Within this scenario, since red blood cells have a
diameter of about 8 μm and they are damaged by eddies of comparable size (Liu
et al. 2000), it is possible that viscous stresses, even if smaller in magnitude, are more
dangerous for haemolysis than the turbulent ones.† This consideration leads us to
also examine the viscous stresses to understand what is their magnitude compared
to the turbulent counterpart, and which regions of the flow are more dangerous for

† The same considerations would also hold in the case that, as suggested by Pope (2000), the
Kolmogorov scale underestimates the actual size of the smallest length by more than a factor of 2,
and that the dissipation spectrum peaks at about 10η.
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the blood integrity. A similar study has been already conducted by Ge et al. (2008),
where the spatial distribution of the Reynolds and viscous stresses was computed
for a mechanical heart valve in an axisymmetric aortic root configuration. It should
be noted, however, that the zonal assessment of stresses gives a characterization
of the flow field only in terms of spots of potential blood cell damage, but the
lack of information on exposure times to stresses is a major drawback. In fact, the
mechanism of blood cell damage depends not only on the level of stress, but also on
the exposure time to it. A Lagrangian approach is then required, with the viscous
shear stress and exposure time along the trajectory that can be determined for single
particles. Considering that blood fluid particles are advected by the flow and that the
haemolysis depends on the history of the mechanical stresses experienced by the cells,
it seems obvious that a Lagrangian analysis is needed to study this phenomenon.
Nevertheless, the false notion that loads computed on Eulerian grids (often Reynolds
stresses) are adequate to assess the potential risk for haemolysis has been dominating
for decades, even on the specialized literature; we believe, therefore, that an explicit
discussion of the above concepts is necessary.

To further stress this point, before applying the Lagrangian analysis to the complex
heart valve problem, let us consider a simple model flow with a smooth two-
dimensional unsteady divergence-free velocity field ux =A sin(ωt) sin(kx) cos(ky) and
uy = −A sin(ωt) sin(ky) cos(kx) with A an arbitrary amplitude, ω = 2π/T , k = 2π/L, T

and L, respectively, the time and spatial periods of the flow. By time averaging over
an integer number of periods T the mean components would be ux = uy =0 and the
velocity fluctuations are u′

x = ux −ux ≡ ux and u′
y = uy −uy ≡ uy: the quantity T SS2D

max

can therefore be easily computed from the Reynolds stress tensor as

T SS2D
max =

A2

4

(
[cos(2ky) − cos(2kx)]2

2
+

sin2(2kx) sin2(2ky)

4

)1/2

. (3.7)

On the other hand, from the velocity field the rate of strain tensor can be computed
from which the viscous stress tensor and its scalar equivalent τeq (see (3.9) and related
discussion below) are derived

τeq =
2μkA

3
sin(ωt) cos(kx) cos(ky), (3.8)

with μ the dynamic viscosity of the fluid. Assuming, as commonly done in blood
damage studies, that (3.7) and (3.8) represent, respectively, the turbulent and viscous
stress effects on the fluid particles, there are evident differences; the two quantities
have a different spatial structure with the viscous effects acting on smaller scales. The
turbulent stresses, in addition, completely miss the flow time dependence and this is
an important point, since the blood damage is due to an accumulation of mechanical
stresses that are instantaneously experienced by the cells along their trajectory. These
trajectories can be easily integrated numerically and it can be observed that some
particles cross high-turbulent-stress regions with high velocity, thus accumulating a
small dose of damage, while others persistently reside in a high-turbulent-stress zone
but during a period in which the velocity is vanishing, without damage accumulation.

From the above discussion it is evident that turbulent stresses are, by definition,
unable to account for instantaneous events that instead are the most relevant for
haemolysis. In other words, the effect of the Reynolds stresses cannot be accounted
on a particle trajectory of an unsteady flow because the turbulent stresses describe an
averaged picture of the flow, while a particle on its trajectory is only affected by the
local and instantaneous features of the field.
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Figure 20. Representative particle trajectories for different initial positions. The lines are
coloured by the equivalent scalar stress τeq (in N m−2) defined in (3.9).

The Lagrangian analysis could be easily implemented in the present numerical
procedure by tracking passive particles and interpolating along the trajectory all the
needed quantities. It is worth mentioning that our implementation of the Lagrangian
tracking is quite general being possible to consider particles with density different
from the fluid, and therefore to account for the Stokes drag, lift, added mass and
other effects. Nevertheless, in this analysis we have decided to track only passive ideal
particles whose trajectory x(t) is determined by ẋ = u, u being the fluid velocity. The
reason for this choice is that our ‘ideal particles’ are meant to follow the trajectory
of a small volume of blood still considered as a single fluid. On the other hand,
tracking a single blood cell would be beyond the present computing capabilities, since
in the blood the concentration of the solid part with respect to the liquid (serum) is
40 %–50 % (haematocrit), and neglecting the particle–particle interactions as well as
the back reaction of the particles on the fluid would be impossible. In addition, blood
cells are highly deformable, and this is the reason for the non-Newtonian behaviour
of the blood in small capillaries, thus further complicating the tracking of single cells.
In our analysis, we have tracked 101 particles in each flow cycle and figure 20 reports
three selected trajectories showing typical behaviours; of course, each trajectory is
representative of a large amount of them including cases in which a mixing of the
three different dynamics is present. Note that the leaflets are not displayed because
the integration of the trajectories is performed over one or more pulsating cycles,
and the leaflets assume all the angular orientations between 10◦ and 70◦. We wish
to point out that the tracking of 101 particles would be certainly not enough if the
computation of Lagrangian statistics had to be performed. This kind of analysis,
however, would be necessary if some tracers (like micro bubbles for diagnostics) or
drugs were released only from a small spot, for example a catheter, upstream of the
valve and the probability for a particle to cross one particular region of the valve had
to be computed. In contrast, in large vessels the blood has a spatially homogeneous
composition, therefore each region of the valve is crossed by the same type of fluid
particles. In addition, considering that the total volume of blood in an adult human
is ∼5 l, the mean flow rate through the valve is 5 l min−1 and that the half-lifetime
for red cells (the time needed for an initial population of M red cells to decrease to
M/2) is 120 days, we can estimate an average of about 1.73 × 105 valve crossings for
each fluid particle (and the red cells contained therein). On account of these numbers,
it is reasonable to believe that any fluid particle will pass through all the regions of
the heart valve, and that every phenomenon observed on a particular trajectory will
occur many times to each fluid particle.

The effect of the viscous solicitation has been computed by the full viscous stress
tensor which has been interpolated over the particle trajectory; the reduction from a
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Figure 21. (a) Time evolution of the scalar equivalent stress τeq (a) and of the BDI (b) for
the three trajectories of figure 6. trajectory in figure 6(a), trajectory in figure 6(b)
and trajectory in figure 6(c).

second-order tensor to a single scalar quantity has been performed according to the
von Mises criterion used also by Apel et al. (2001). This approach is useful to relate the
three-dimensional stress tensor of a general flow field to a single stress value generated
in a one-dimensional shear flow experimental device. In this criterion, the strains
due to shear cause damage while those related to volumetric changes (that for
incompressible flows are zero) are neglected. The equivalent scalar stress τeq is then
obtained by equating the deformation work of a fluid element in a plain shear flow
with the same work for a full three-dimensional deformation, thus yielding†

τeq = 1√
3

√
τ 2
11 + τ 2

22 + τ 2
33 − τ11τ22 − τ22τ33 − τ11τ33 + 3

(
τ 2
12 + τ 2

23 + τ 2
13

)
, (3.9)

by which are coloured the trajectories of figure 6(a–c). The particles like that of
figure 6(a) reside in the high-speed regions of the flow, far from solid walls, and
typically cross the computational domain in a fraction of the heart beat. For these
particles viscous stresses are negligible (figure 21a). Another class of particles, like in
figure 6(b), during the motion sweeps the surface of the leaflets or of the aortic wall,
and in this case the viscous stresses become non-negligible. Finally, those particles
as in figure 6(c) crossing the tiny gaps between the leaflets and the valve housing
experience very high levels of viscous stresses that are likely to produce haemolysis
as is confirmed by the experience. It is worth noting that the particle in figure 6(c)
is subject to the highest solicitation when passing through the gap mimicking the
real hinge. As already mentioned, in our case the gap size is 340 μm which is bigger
than that of real valves (Fallon et al. 2007), in addition the hinge mechanism is
considerably more complex than our computational simplification, it is therefore
plausible that the stress in a real valve would be even higher and consequently
more dangerous for the haemolysis. As an aside, we note that considering the small
physical size of the hinge gaps it could be argued that the non-Newtonian nature of
the blood becomes important. There is however a two-fold reason for maintaining
the Newtonian constitutive relation (i) the size of the smallest hinge gap is ∼100 μm
which is still considerably bigger than the diameter of a red cell 8 μm, and (ii) the

† Following Apel et al. (2001), the one-dimensional work can be written as W1D = τ 2
eq/(2G), while

for the general three-dimensional expression, we have W3D =
∑

ij [(τii − τjj )
2 + 6τ 2

ij ]/(12G) with

i, j = 1, 2, 3, τij the generic element of the stress tensor and G the shear modulus of the material
(or modulus of rigidity) whose specific value is uninfluential.
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shear stresses in the gaps are the highest of all the flows, therefore the formation of
rouleaux in that region is very unlikely.

To further emphasize the potential risk of haemolysis for the flow through the
hinges, we can compute the percentage of the total flow rate crossing the gap regions:
it is ∼4 % of the mean flow rate when the mean velocity is in the positive z direction
(forward flow) and ∼7 % when the valve is closed (backward flow) for a total flow
rate of 0.55 l min−1. Of course, these values are strongly dependent on the gap size
and the particular hinge mechanism, and therefore might change considerably from
valve to valve. Nevertheless, Fallon et al. (2007) report a range of leakage flow rates
in the range 0.13–0.69 lmin−1 for different valve models, which is consistent with our
finding. If we consider again that the half-lifetime of the red cells is 120 days, we can
easily conclude that independent of the particular valve model the crossing of the
hinge region is practically unavoidable for every red cell.

The modelling of the concentration of haemoglobin released (Hb) by damaged red
blood cells depends on the shear stress τ and on the exposure time t through the
general expression (Blackshear, Dorman & Steinbach 1965; Giersiepen et al. 1990),

I (%) =

(
�Hb

Hb

)
(%) = Ctaτ b, (3.10)

where C, a and b are constants to be determined experimentally. Equation (3.10) has
been extrapolated from experimental data obtained in uniform shear stress, and it
must therefore be extended to a condition in which the blood is exposed to strongly
time-dependent conditions. Following Blackshear et al. (1965), this can be achieved
by introducing the mechanical dose D = tτ b/a , inspired from aims and methods of
dosimetry, according to which the blood damage index (BDI) can be written as
BDI =CDa . Assuming that during the time interval dt the shear stress τ remains
constant, we have dD = τ b/adt and d(BDI) = CaDa−1dD. Omitting the mathematical
details (that can be found in Grigioni et al. 2005), the BDI can be numerically
computed by adding up the basic mechanical dose values acting on a fluid particle
moving along a trajectory, resulting in the following expression:

BDI =

N∑
i=1

Ca

[
i∑

j=1

τ (tj )
b/a�tj + D(t0)

]a−1

τ (ti)
b/a�ti, (3.11)

with �ti = ti − ti−1 the discrete time interval in which the shear stress is τ (ti), N the
number of observation time intervals along the fluid trajectory and t0 the starting
observation time. The values of parameters a, b and C are the ones originally
proposed by Giersiepen et al. (1990), the most popular choice for the classification of
haemolytic potential of artificial organs: a =0.785, b =2.416 and C = 3.62 × 10−5, if
the quantities in the equation have units: s for time and Nm−2 for the shear stresses.

The time evolution of the BDI for the three trajectories reported in figure 6 is
shown in figure 21(b) where the combined effects of shear stress and exposure time
can be appreciated. In particular, it is evident that the damage to a blood particle
sweeping a solid surface is two-fold; not only the viscous shear stress is high, but also
the velocity is reduced owing to boundary layer effects and the exposure time is long,
thus increasing the damage.

Before concluding this section, we wish to stress that we do not have a comparison
between viscous and turbulent stresses on a particle trajectory, since we have not
found an obvious way to compute a phase-averaged quantity (turbulent Reynolds
stresses) over an instantaneous Lagrangian trajectory of a fluid particle. Nevertheless,
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considering the widths of the T SSmax peaks in figure 5 and the velocities if the FP
phase of the cycle (1–1.5 m s−1), the time taken by a particle to flow through these
regions is smaller or comparable to the exposure time to high levels of viscous stresses
(figure 21a). We note also that the comparison of figures 5, 6 and 21(a) suggests
that viscous and turbulent stresses have comparable maxima but acting in different
flow regions. Therefore, even if the previous discussion on turbulent, viscous stresses
and related length scales is not considered, none of the stresses would be a priori
negligible, since their effect on the blood would depend on the particular trajectory
of the fluid element.

4. Conclusions
In this work, we have developed a numerical tool for studying the pulsatile flow in a

mechanical heart valve with a realistic geometry of the aortic root so as to reproduce,
as close as possible, an existing experiment. This has been achieved by combining the
immersed boundary method with a fluid–structure interaction algorithm that proved
to be accurate and efficient. The main aim was to simulate the complete dynamics
of the mechanical valve without any compromise, either on the geometry of the
system or on the flow physics. The results have been validated by a comparison
with experimental data obtained for a similar configuration (Cerroni 2006; Romano
2008); both the leaflets dynamics and the velocity fields are in satisfactory agreement,
thus confirming the reliability of the numerical data. The main bottom line of the
numerical method is its inexpensiveness; first of all this technique does not need a
body conformal mesh that, on account of the complex geometry with parts in relative
motion, would imply a considerable computational overhead. In addition, the flow
solver largely benefits from solutions on simple grids; the present simulation, in fact,
could be carried out on a grid of about 6.6 million nodes using about 1.6 × 104 time
steps per heart cycle within 1 Gb of RAM memory on a 3 GHz P-IV single processor
in about 60 h per cycle.

In addition to the basic features, the systematic delay in the closing of one of the
leaflets and the effect of their axial translation have been investigated in detail. It
has been observed that the asymmetric valve mounting with respect to the Valsalva
sinuses causes one of the leaflets (the upper half in figure 3a) to face directly one sinus;
the recirculation in the latter during the diastole produces a low-pressure distribution
on the outer leaflet’s surface that delays its closing with respect to the other leaflet.
It is known that the recirculation areas within the sinuses throughout the aortic root
during the diastolic phase have a fundamental role in the feeding of the coronary
arteries that depart from two of the sinuses. While these recirculation areas have been
observed to persist also in presence of a mechanical valve (figure 17), it is not clear
how the valve position/orientation and the remodelling of the aortic root after the
valve replacement alter the coronary flow. This is a fundamental point, because in
a valve implantation it is presently difficult to preserve the anatomical shape of the
aortic root and the latter is sometimes reduced to a much simpler shape for the sake
or durability and reliability of the intervention (Bental procedure). All these points
are being investigated and they will be the subject of a dedicated study.

Since the main drawback of the mechanical heart valves is the propensity to
haemolysis and platelet activation, we have also investigated the production and
spatial distribution of shear stresses in the flow field. We have found that viscous
and turbulent stresses have comparable magnitude, although in different flow regions,
and therefore none of them is a priori negligible. Nevertheless, considerations on the
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red cell dimensions, the Kolmogorov scale and the turbulent shear stress spectrum
suggest that viscous stresses are potentially more dangerous, since they act on length
scales comparable to that of the blood cells. This is indirectly confirmed by the
experimental observations, showing that most of haemolysis occurs during the end of
the closing phase (Kini et al. 2000), owing to the squeezing of the red cells between
the leaflets and the valve housing, and in the flow through the hinges. Nevertheless,
platelets, responsible for clots and thrombus formation, are activated at lower levels
of stress than those necessary for haemolysis; the augmented mechanical stresses
generated by the mechanical valve certainly deserve more investigation and it is
currently under study by comparing different valve geometries and flow conditions.

Many things could be done to extend and improve the present investigation: One
of them is to increase the number of simulated flow cycles in order to get more
converged statistics. We note, however, that the r.m.s. of the velocity profiles already
capture the correct magnitude and peak positions with respect to the experimental
data obtained by averaging over 200 cycles. Another point could be a more realistic
modelling of the hinge geometry, especially on considering that the flow in that region
is responsible for the highest viscous stresses and is implicated for haemolysis. Finally,
the deformation of the aortic walls could change either the turbulence features or the
leaflets dynamics through an alteration of the pressure gradients along the flow; this is
a big difference between in vitro and in vivo investigations and numerical simulations
could be very helpful in this respect.
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