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The application of the Immersed Bounddi®) method to simulate incompressible, turbulent
flows around complex configurations is illustrated; the IB is based on the use of non-body
conformal grids, and the effect of the presence of a body in the flow is accounted for by
modifying the governing equations. Turbulence is modeled using standard Reynolds-Averaged
Navier-Stokes models or the more sophisticated Large Eddy Simulation approach. The main
features of the IB technique are described with emphasis on the treatment of boundary condi-
tions at an immersed surface. Examples of flows around a cylinder, in a wavy channel, inside
a stirred tank and a piston/cylinder assembly, and around a road vehicle are presented. Com-
parison with experimental data shows the accuracy of the present technique. This review ar-
ticle cites 70 references[DOI: 10.1115/1.1563627

1 CONTEXT domain(body conforming grigl Usually industrially relevant

The continuous growth of computer power strongly encou@eometries are defined in a CAD environment and must be
ages engineers to rely on computational fluid dynamidégnslated angleaned(small details are usually eliminated,
(CFD) for the design and testing of new technological solverlapping surface patches are trimmed) ékefore a sur-
tions. Numerical simulations allow the analysis of compleface grid can be generated. This mesh serves as a starting
phenomena without resorting to expensive prototypes apdint to generate the volume grid in the computational do-
difficult experimental measurements. main.

The basic procedure to perform numerical simulation of |n addition, in many industrial applications, geometrical
fluid flows requires a discretization step in which the corcomplexity is combined with moving boundaries and high
tinuous governing equations and the domain of interest ai@ynolds numbers. This requires regeneration or deforma-
transformed into a discrete set of algebraic relations valid iy of the grid during the simulation and turbulence model-
a finite number of locationgcomputational grid nod¢sn- g |eading to a considerable increase of the computational
side the domain. Afterwards, a numerical procedure is ifjiic\ties. As a result, engineering flow simulations have

voked to solve the optamed I|nee.1r.or nonlmgar syst-em fgrge computational overhead and low accuracy owing to a
produce the local solution to the original equations. This pro-

f ber of i de and high st -
cess is simple and very accurate when the grid nodes grerc number of operations per node and high storage re
distributed uniformly(Cartesian meshin the domain, but quirements in combination with low order dissipative spatial

becomes computationally intensive for disordetadstruc- discretization. Q'Ve” Fhe finite memory anq speed .Of com-
tured point distributions. puters, these simulations are very expensive and time con-

For simple computational domairia box, for example suming with compl_JtationaI meshes that are generally limited
the generation of the computational grid is trivial; the simJ® around one million nodes.
lation of a flow around a realistic configurati¢a road ve- In view of these difficulties, it is clear that an alternative
hicle in a wind tunnel, for exampleon the other hand, is numerical procedure that can handle the geometric complex-
extremely complicated and time consuming since the shalié but at the same time retains the accuracy and high effi-
of the domain must include the wetted surface of the geomiency of the simulations performed on regular grids, would
etry of interest. The first difficulty arises from the necessitiepresent a significant advance in the application of CFD to
to build a smooth surface mesh on the boundaries of thelustrial flows.
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In order to use regular Cartesian-like meshes, the requispace; the information about the position of the fibers and
ment that the grid is conforming to the domain boundampeir forcing on the fluid is transferred to the Eulerian under-
must be relaxed. The basic idea is to consider the discretiging mesh where the flow solution is obtained. In this pro-
tion of a simple, fictitious computational domain obtained byedure, the resulting forcing consists of delta functions lo-
eliminating the complex object of interege, the road ve- cated on the first cells external to the immersed body which,
hicle in the example cited abokein order to obtain a real- therefore, can not be adequately represented on a finite size
istic simulation, the effect of the presence of the object Qfesh. For this reason, a smooth transition between the exter-

the flow must be included in the problem. This can by fuig and internal body cells is introduced which is

achieved by introducing appropriate extra terms in the goé%gvalent to spreading the delta function over a narrow band
i

erning equations. Several approaches have been develo cally three or four nod@sacross the boundary.

by using this concept and the main differences are related Lo .
the definition of the additional terms or, more in general, t The problem of heart modeling is complicated by the fact

the discretization schemes used in the vicinity of the t%at the boundaries of the computational domain are moving

mersedsurfaces; in the next section an overview of diﬁererﬂnd respond to. forcegtypically the press.u.re and viscous
flavors of this approach is presented. The details of variog&€SSesdepending on the local flow conditions. In contrast,
forcing schemes are then described together with two dpth€ boundary configuration is fixed and known, the com-
proaches used for the simulations of high Reynolds nump#ftation of the interaction between the fluid and the im-
turbulent flows. In addition, a proposed scheme for grid ef2ersed surfaces is much simpler. In principle, Peskin’s ap-
richment in the neighborhood of an immersed surface is dé@0ach can be applied directly by decreasing the

scribed. deformability of the elastic fiber; in practical terms, this will
Several examples of the application are reported to denesult in a numerically stiff problem.
onstrate the accuracy and flexibility of this technique. The first applications of the IB approach to problems with
solid, indeformable immersed surfaces were carried out by
2 BACKGROUND Basdevant and Sadourryl0], Briscolini and Santangelo

The Immersed BoundargB) technique allows the solution [11]; and Goldstein, Handler and Sirovigh2].

of differential equations in complex geometric configurations Briscolini and Santangelfi1] used an immersed bound-
on simplemeshes by introducingprcing conditions on cer- &y approach(referred to as mask method, which was a
tain surfaces corresponding to the physical location of ttfeodified version of that by Basdevant and Sadoyd®)) to
complex boundaries; the simulations are then performed of@mpute the unsteady 2D flow around circular and square
much simpler domain. This idea has been pursued by magyjinders at Reynolds numbers up to 1000 whereas Gold-
researchers in the last three decades. To the authors knastéin, Handler and Sirovichil2] considered the 2D start up
edge, the first example is due to Vieddlj that extended the flow around a circular cylinder and 3D plane- and ribbed-
Marker and Cel(MAC) method[2,3] to include boundaries turbulent channel flow. In these works, the IB approach is
of arbitrary shape. The basic idea consisted of treating theed in conjunction with spectral methods and the forcing is
fluid-boundary interface as a free surface and to impose theygplied in a bandconsisting of three to four computational
pressure boundary conditions so that particles could mongedes around the interface. This was required to reduce spu-
only along the tangent to the boundary line. This procedufgus oscillations appearing in the solutions. On the other
led to an iteration between pressure and velocity fields ungihnd, Saiki and Biringe13] used the forcing of12] to

flow incompressibility and boundary impermeability wergompute the flow around steady and rotating circular cylin-
both satisfied. The method, referred to as ABMBGbitrary  gers using fourth order central finite-difference approxima-
Boundary MAQ, was generalized in a successive pd@dr ions The use of finite-differences avoided the appearance of
to cope with moving walls and in this case, in addition to thg,) o5 flow oscillations at the boundary even if in that case

pressure, velocity boundgry conditions were also imposedﬁ L forcing was also spread across the boundary using a pro-
the |.nterfa_lce. This tephmque alloweq the treatment of Walc dure that the authors refer tofast order accuratesimilar
moving with a prescribed law or moving as a consequence.Q

. to the delta function of Peskif5].

the forces exerted by the fluid on the surface. The main drawback of the forcing introduced [it2] is

Peskin[5,6] reports, at the beginning of the 1970s, simu- . . 9
lations of the blood flow in the heart/mitral-valve syste hat _|t contains two free co_nstants that_ need f[o be tuned ac-
assuming a very low Reynolds number and 2D flow. Thre&07ding to the problem being solved; in particular, for un-
dimensional heart flows that also included the contractile afjifady flows this forcing introduces a time step limitation
elastic nature of the boundary were considered successiviigt reduces the efficiency and the applicability of the
by Peskin[7] and McQueen and Pesk[8,9]. In Peskin’s method (see Section 3.2.1 for a detailed descriptioAn-
formulation, the fluid equationgincompressible Navier- other disadvantage of the described methods is that, in order
Stokes equationsare solved on uniform Cartesian grids and® avoid equation stiffening and unphysical flow oscillations,
the elastic fibers of the heart walls dnemersedn the flow: the boundary forcing terms are spread across the boundary
fluid and fibers exert time varying forces on one another. Which therefore is smeared over the grid, thus decreasing the
Lagrangian coordinate system moving with the local fluidolution accuracy.
velocity is attached to the fibers and tracks their location in In the framework of general PDEs, the mathematical for-
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mulation of the problem has been described by LeVeque andA different technique, calle€artesian Grid Methogdalso
Calhoun[14]; a simple 1D unsteady diffusion equation withrelies on non-body-fitted meshes to describe the flow around

a moving interface was considered: complex geometries. In this case, however, instead of adding
forcing terms to the governing equations, the grid cells are
b= hxxt (1) 6(x—a(l)) (1) modified at the body interface according to its intersections

with the underlying grid. Given the large number of possible
intersections, this generates a wide varietycof interface

The discretization of Eq(l) requires the use of an ap-cr?”.sWh'ChI mu_st be haﬁd:ed 'n? §epara|1te way der?e;dwrl]g on
proximation toés: 8, . The authors derived constraints to im{N€lr topology; nevertheless, finite volume methods have

pose oné, to ensure high order accuracy at the immers en successfully used for the_ galculation o_f comple_x 3D
boundary. No such guidelines are available in general, ie, F?WS [23]. In the frameyvork of finite volume discretization,
the 3D Navier-Stokes equations. Neverthelgsgosteriori the transfer of information from the embedded surface to the

analysis has shown that it is possible to achieve second Oragperlylng Cartesian grid need_s special '_[reatments o satisfy
accuracy in practical applicatiofi5). conservation laws on the physical domain. As already men-

Mohd-Yusof [16] derived an alternative formulation Oftionehd, tlTiS reiultsh in_ irrefgularl%/ str:apeéj ge(l@_artehs_iahn
the forcing that does not affect the stability of the discrelﬁes cells cut by the interfacat the boundaries in which a

time equations and does not require forcing smoothing. IX p;llanczﬁ musbt be gerfolrmeg.bVaﬂf?us flzvorsgeg cut
addition, no user-defined parameters were used in the for orithms have been developed by Aftosi#é] and Forrer

lation of the forcing function, making it flow independencs]' The pacmhg |tehm Irt]) appI);:ng f'f_?lte volume .schgm(.—:‘f] on I
(see Section 3.2)31n [16] the new forcing was combined artesian meshes has been the stiffness associated with smal

with B-splines to compute the laminar flow over a 3D ribbe8EEIIS cut .at the boundaries; rec'ently §Eal [26] proposed
channel, showing substantial improvements with respect QS" merging schemes that aIIew_ate this probl_em by aggl_o_m-
the previous formulations. This discrete time forcing schenfd@tng the smallest cell to their close_st neighbors. Initial
was originally developed in a spectral context and has afgcuracy assessments have been carried out by Cidtifr

been successfully applied to flows around cylinders aAr ihe ctonrprzesss]:blethNagle_r—Stokes ?guat.lc;ni and :y
spheres, at moderate Re. mgren et al [28] for the Poisson equations; full secon

Recently, the same idea of forcing has been useflLBy order accuracy was only obtained considering the cells not

and[18] in the framework of a finite-difference Large-Edd;}nterseCted by the boundaries. In the more recent analysis by
Simulation code. The applications included the flow aroun%xe et al [26], second order accuracy has also been reported

simple and complicated geometries in a large range of R(%;—the boundary.

nolds numbers. Some of these results are reported in t eFmaIIy, an entire class of numerical techniques has been

following. eveloped to handle moving interfaces various physical

Before concluding this section, we wish to stress that '[ﬁ‘é'ituré on a fixed grid. Two of these techniques are the Vol-

above described techniques can all be gathered under e of Fluid (VOF) approaci{29] and the Level-Set tech-

name of Immersed Boundary methods which are the Obj&gue[SO]. An example of applications for the first technique

of the present review. There are other procedures, howe\}grt,he tracking of interfaces betvv_een different fIy(ds free
that rely on a similar philosophy and differ in technical de§urface flowand for the second is the propagation of flames

tails. For the sake of brevity, we will not review these ap'—n combustion modelind31]. These techniques might be

proaches, but we will give in the following a short descripf'-jld‘r’lpted to deal with solid interfac@epresenting and object

tion in order to provide the interested reader with additionéﬁ a fluid stream and therefore used in a context similar to
references. the IB method.

A class of methods callegenalty methodsr fictitious
domain methodsr domain embedding methodssumes the 3 NUMERICAL TECHNIQUE FOR
immersed body as a porous medium and solves the NavieHE NAVIER-STOKES EQUATIONS
Stokes-Brinkman equations; these are the Navier-StoKesthis section, a numerical technique for the solution of
equations with the addition of a term of volume drag, calledavier-Stokes equations based on the IB approach is de-
Darcy drag, which accounts for the action of the porous mseribed. The simulation of the flow around a solid object
dium on the flow. When the medium permeabilfytends to requires the generation of a computational grid covering the
zero, the medium behaves as a solid body and the fl@lmain of interest without the object and a geometrical de-
around an arbitrary shaped object can be studied. A detaikatiption of the objectin general, a surfacg). The govern-
description of the method can be found in Khadtal[19], ing equations are solved on thkederlyingmesh and dorc-
Khadraet al[20], Angot et al[21], Kevlahan and Ghidaglia ing termf is introduced to model the effect of the presence of
[22], and references therein; in this context we only wish tine body on the flow evolution. This term is evaluated such
stress that when viewed from the perspective of the inthat a desired velocity distributiodg can be assigned over
mersed boundary methods, the penalty methods can be cire- boundaryS We wish to stress that the presencef of
sidered as a particular case of the forcing[bg] and[13], Eg. (2) does not imply, necessarily, a force acting on the
even if with a completely different physical meaning. Thifluid; in fact, while the expression df by [5,12], and[13]
will be briefly shown in Section 3.2.2. indeed represents the action of the surface on the flow, the

where «a(t) represents the interface locatidimmersed
boundary andc(t) the solution value inx(t).
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formulation by[16] is equivalent to a velocity boundary con-  The eddy viscosity, is modeled as»t=CA2(2§j§j)1/2
ditions inside the domain. The Navier-Stokes equations fWhereg» is the filtered rate of strain tensor, andis the
an incompressible fluidwith density p and viscosityy) in = gy, widjth (typically the grid siz&

3D are: The value of the model coefficie in the subgrid scale
Du du turbulent viscosityy, is determined by a dynamic procedure
_ . = 2,1 = t . . ‘g .
Dt 4t +u-Vu=pVou—p "Vp+i, V-u=0 (@) [32,33 that does not require direct specification of any
h d th locit i dth model constant. Essentially, this involves filtering at two dif-
W ere“t.anl plare ne ."T °Ct'hy components a{‘. i € pr]‘?SS‘t"r: grent length scalegor filter widths. The first filtering op-
respectively. In principie, there are no restrctions 1or g q js implicit in the numerical method, and corresponds
velocity distributionVg and for the shape and motion &f fil idth that i | he local arid .
therefore, a variety of boundary conditions can be imposetg a filter widt t atis equa 'to t € local grid spacing.
' "The second filte(the test filtep is implemented by aver-

The main advantage of this approach is thatan be pre- _ . . o .
. .~._aging over nearest neighbor nodes; this corresponds to a fil-
scribed on a regular mesh so that the accuracy and efficien ' . . . :
. : . -~ ter width of twice the local grid spacing. Finally, an average
of the solution procedure on simple grids are maintaine

The geometrical description of the object is based on a cApyer statistically homogeneous directions is needed to deter-

representation so that the CFD solver can be directly link&d"© the Ipcal val_u_e .Of:' PrO\./'dEd that g”d resolution is

. . adequate in the vicinity of solid walls, this form of the dy-
to the CAD environment without the need for surface tran%—amiC model properly accounts for wall proximity without
lations and modeling. properly P y

The main components of the present solver are: explicit damping functiongeg, the van Driest function in the

) ) e case of a Smagorinsky mode4).
1) accurate and reliable discretization schemes and turbL?The prescription of the ternh is described in the next

lence models égction
2) a computational-geometry algorithm to locate the obje " . . . .
) P 9 y &g J Details of the numerical method are given in Verzicco and

%néghtgidgt?,i (?Ejigf s;rr?gzs;:il:éog:c? trlggogsemiggnthgrlandi [35] and Orlandi(2000 [36], the latter alsp provid-
3) a mesh-enrichment approach to increase the grid resdf&g,the source code and seyeral advanced .tutonal_s; qnly the
tion in the vicinity of the immersed surface main features are summarized here. Spatial derivatives in
. . . ~ Egs. (3) are discretized in a Cartesian or polar cylindrical
The;e components will be described in the following,qdinate systertdepending on the applicatiposing stag-
sections. gered central second order finite difference approximations.
The discretized system is integrated in time using a fractional
step method where the viscous terms are computed implicitly
and the convective terms explicitly. The large, sparse matrix
rPgsulting from the implicit terms is inverted by an approxi-

theref imulati ¢ d at relativelv low R | ate factorization technique. At each time step the momen-
erelore, simulations periormed at relatively fow IReyno equations are provisionally advandededictor stepus-
number. In these conditions the treatment of the immers

oo . the pressure at the previous time step, giving an
boundary condition is somewhat less critical becausethe\tlg P P P. giving

3.1 Discretization schemes and turbulence modeling

Most of the nonbody conforming techniques described in t
literature are based on the direct solution of E@.and,

) e termediate non-solenoidal velocity field. Afterward, an el-
cous effects are dominant and stabilizing for the numeri

: tic equation (obtained combining the continuity and the
procedur_e. On the other hand, high Reynolds numbers Bmentum equationds solved to enforce the divergence-
challenging because the boundary layers tend to be S - L

; . N fee condition on the velocity field.
tremely thin and inaccuracies introduced at {iremersed
boundary can completely modify the development of th®1.2 Reynolds averaged Navier-Stokes technique
flow. In this review we examine th'e B tgchnique developethe RANS equations closely resemble the Es.with the
in the framework of Large Eddy SimulatidhES) and Rey- difference that the dependent variables are now time aver-
nolds Averaged Navier-StokéRANS) approaches. aged(and not space averagetlVithin this context, therefore,
3.1.1 Large eddy simulation technique u andP denote the mean velocity and pressure, respectively.

The relevant equations for LES are obtained from tHgf®m @ physical point of view, the main difference is that
turbulence is modeled completefgt all length scalesand

Navier-Stokes Eqg2) after the application of a space filter :
(filtered variables are denoted with a bar fqr this reason turt_)ulenc_e models are more complex and cru-
cial for accurate simulations.
In addition to Eqs/(3), transport equations are solved to
Dt model selected turbulent quantitiéfer example, the turbu-
— lent kinetic energy and the turbulence dissipation rate in the
‘u=0 3 standardk- e models[37]) with the objective being to build
The difference betweer?) and (3) consists of the secondthe eddy viscosityr,. This is a substantial difference be-
term on the right hand side @8) that is obtained when the tween LES and RANS when used in conjunction with the IB
filter is applied to the nonlinear term-Vu and the Bous- approach for an immersed solid object; turbulent quantities
sinesq hypothesis of stress-strain linear relationship eghibit steep gradientsand usually local maximain the
invoked. near vicinity of solid boundaries. This imposes strict require-

Du _ _ _ — —
——vV2u+V-{v+vt[Vu+(Vu)T]}—p‘1VP+f, \Y
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ments to the accuracy of the numerical scheme and to i@ Definition of the forcing term

grid resolution in the region near the immersed boundary.The accuracy of the 1B approach depends on the specifica-
One of the simplestyet accuratedifferential turbulence {jon of the forcing term in the governing equations. In this
model is the one equation model due to Spalart and Allmargsction, different approaches are analyzed. In addition, the
[38]; the additional transport equation is: problem of defining the forcing in the neighboring of the
7 1 immersed surface and eventually inside the object are
Bt =Gt 5 VA Vi) +Coal VY=Y, 41, (4)  discussed.
whereG,, is the production of turbulent viscosity and, is 3.2.1 Eeedback fo.rcmg o i
the destruction of turbulent viscosity that occurs in the neRUPPOsIng that the immersed surf&seoincides locally with
wall region due to wall blocking and viscous damping; ("€ grid node i,j,k) and a Dirichlet boundary condition,
andC,, are model constants arid is the forcing term. The POSSibly time dependent(t) = ¢(t) has to be applied is

eddy viscosity is computed as: either one of the velocity components or the eddy viscosity
s in the RANS model The forcing ternt, according to Gold-
o~ X stein, Handler and Sirovidi 2] and Saiki and Biringefi13],
"VPCE, ®) s:

where y is the ratio betwee and the molecular diffusion t , , ,

and Cy,;, another model constant. The production term i%ik(t)zaffo[d’iik(t )= ps(1)]dU+ Bl ¢iji(1) — hs(V)]
proportional to the vorticity magnitude~ whereas the destruc- (6)
tion term contains the dependency enand the distance . . .

from the closest wall to provide eddy viscosity damping iff'f and j; are negativeconstants(whose dimensions are,

B 2 - .
the near-wall viscous dominated region. This model has be&sPectively, TT® and 1T, T being the timg The above

developed to capture appropriately boundary layers flogdantity is a feedback to the differengg — ¢ that asymp-

subjected to adverse pressure gradients: it is the simplfsgically enforcesdyj = s on the immersed boundary. In
model available to accurately capture separaf@gy. It is 'act: the first term of Eq(6) will decrease in timebecome

useful to point out that the modified eddy viscosityaries more negative as the integrand increases, thus tending to

linearly in the boundary layer approaching a solid wafinnihilate any difference betweef; and ¢s. The second

(whereas the variation of the eddy viscosity is nonlinear afgrm. on the other hand, can be interpreted as the resistance

cording to Eq.(5)). This property will be useful in conjunc- opposed by the surface element to assume a boundary value
tion with the treatment of the immersed boundaries. Dif'fep-'ﬁere_nt fr_o_m Ps- . .
ently from the SGS model in the LES approach, this mode| A" INtuitive argument for understanding the action of the
requires for each computational grid point the distance frof?CVe forcing is the following. Consider the forcing applied
the wall to evaluate the damping functions. tp the velocity components n Eo&2) to.|mpose the.condl-

The equations are discretized on structured grids usind'%n u(t)=Vson the surface; if we retain only the first term
collocated finite difference high order upwind scheme. THY the left hand side and the last term on the right hand side

code solves the equations in a segregated manner, with fh&he Navier-Stokes Eq2):
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa- dq t
tions) algorithm used to achieve the pressure-velocity cou- a”fzaffoth'+ﬁfq (7)
pling for stability. In the SIMPLE algorithm, the continuity
equation is converted into a discrete Poisson equation feith q=u—Vg. Equation(7) represents a simple damped
pressure. The differential equations are linearized and solvestillator. This implies that as on the boundary becomes
implicitly in sequence: starting with the pressure equatiatifferent fromVg the forcingf brings u back toVs. In an
(predictor stagg followed by the momentum equations andinsteady flow, the magnitude af must be large enough so
the pressure correction equati@orrector stage The equa- that the restoring force can react with a frequency which is
tions for the scalar&urbulent quantitiesare solved after the bigger than any frequency in the flow. Unfortunately, the
updating of both pressure and velocity components. Withiralue of the constants is flow dependent and, even if, when
this loop, the linearized equations for each variable, as thay and 3; are big enough, the flow becomes independent of
arise, are treated using an algebraic multigrid solver. their value, there is not a general rule for their determination.
Other turbulence models can be formulated starting frofthe major drawback of this forcing, however, is that big
transport equations of different quantities; for example, thalues ofa; and 8; make Eqs(2) stiff and its time integra-
equations for the turbulent kinetic energgyand the turbu- tion requires very small time steps. Goldstein, Handler and
lence dissipation ratelead to the well-knowrk- e approach. Sirovich[12] performed the stability analysis and they found
In general, any turbulence model can be used in the frantbat, when all the forcing terms are computed explicitly, a
work of a RANS/IB solveif39] but the particular behavior of one or two orders of magnitude decrease in the time step size
the unknown quantities in the close vicinity of solid wallsvas required to ensure stability. This is clearly unacceptable
will influence the quality and accuracy of the predictions ifor large scale calculations of turbulent flows.
relation to the immersed boundary treatmésgée Section A partial improvement to the stability limit can be ob-
3.2.9. tained by treating the second term in the forcing term of Eq.



336 laccarino and Verzicco: Immersed boundary technique Appl Mech Rev vol 56, no 3, May 2003

(7) implicitly [17]; this modification only alleviates the se-to make the notation consistent with the previous section we
vere time step limitation of a fully explicit treatment of thewill treat the direct forcing in the context of an extra force in
forcing. the Navier-Stokes equations.

It should be stressed that the stability of the calculation Mohd-Yusof[16] first proposed to consider the problem
(and, therefore, the time step siziepends not only on the f forcing directly in the context of the discretized equation
values ofa; and B¢ but also on the flow, ie, on the details ofyy grive the numerical solution towards the required bound-
the geometry to be mimicked. We have observed, for exry values. In his approach, the forcing can be explicitly
ample, that the presence of sharp corners prevents the ad@f¥ined so that appropriate boundary values are specified at
tion of small values(in magnitude of a¢ and 3. On the e immersed surface. In other wordsgify is the approxi-

other hand, for smooth geometries, small values of the cQfyation of the solution of the governing equation, the discrete
stants can be used and simulations upCteL=0.5 can be Nayier-Stokes equation can be written as:

run. It is also possible to relax the valuesagfand s during 1
the quiet phases of the flow evolution, but there is no unique @i~ — Pijx

criterion for this andad hocjudgments are needed. At =RHSHfij (10)
3.2.2 Penalty methods whereAt is the time step anBH Srepresents the discretized
In the family of the penalty methods, the forcing teffy),  form of the convective, diffusive, and source terms in the
assumes the form LES or RANS equations. Supposing, as before, that the im-
mersed surface coincides with the nodlg (k) and a Dirich-
£ :(¢ijk_ bs) ®) let boundary condition ¢= ¢5) has to be applied, the forc-
ik B ing termf can be directly obtained by:

where the parametef is a function both of spatial position _ bs— ¢ir}k
and timet. Equation(8) is a particular case of the feedback fij= At RHS (11)

forcing but it can be interpreted in a different way. If we

consider the Navier-Stokes Eq) and we introduce the P€ing ¢ eitheru or v. _ o
Darcy number Da=K,/L2 with K, a reference permeabil- Once more, it is worth noting that the combination of Egs.

ity and L a reference lengihthe above forcing can be re-(10) and (11) yields ‘i?ir};l:‘f’s which corresponds to a
written for the velocity as boundary condition within the flow; this implies thain
practice in a calculation, the forcing teritfil) is never com-
v(Ujj—Vs) puted. The main advantage in this case is that no additional
fijk:pDT (9)  terms are introduced in the equations, thus avoiding stiffness

problems as in the previous approaches.
K being the new free parameter.Kf—«, the forcing van- .
9 P - g "%3.2.4 Boundary reconstruction

ishes and Eqs(2) recover the standard Navier-Stokes. i . . .
The expressions previously given for the forcing are for-

contrast, ifK— 0, the forcing becomes dominant in the equa- . . .
tion yielding the solutionu;,=Vs. mally derived in the case that the position of the unknowns

For 0<K <, the forcing can be modulated to provide oan the grid_ coincides with the immersed b_ounda_ry; this
momentum loss in a desired region, thus simulating porotf@uld require the boundary to lay on coordinate lines or
media. In this case, Eq42) become the Navier—StokeslsurfaceS which is not the case for complex curvilinear geom-

Brinkman equations that can be solved over the whole d%t_rles. In particular, in the case of a staggered solution algo-

main with different values ok depending on the zonal char-”thm* even if the boundary were coincident with the position
acterization(fluid, solid, or porous medium of one unknown, this would not be so for the others; there-

A drawback of the method is that in computer simulatioanre' afn intherporllat.ion pfrorc]:eiure_ wouldhbe needed a(ljrzway.
the value ofK can be neither 0 now, therefore solid and As for the choice of the forcing scheme, many different

fluid regions are approximated by finite, user-defined valud§cniques have been adopted to overcome this difficulty. We
classify the available techniques in two groups: a

they tend to be dependent on the problem and Reynofb%n

number and must be tuned for each simulation. The maikn€mes that spread the forcing function in the vicinity of the
problem is related to the use of very small valuesahat immersed surface and bchemes that produce a local recon-

increase the stiffness of the governing equations and, thefuction of the solution based on the target boundary values.
fore, the convergence properties of the solution procedure.”€SKin[6] proposed the first approach by substituting a
The final values ol must therefore be a compromise be(_jlscrete Dirac 6 function in (1) as discussed before. The

tween the need of approximating solid boundaries and tH@in drawback of this approach is that this spreading acts as

preservation of the numerical stability at a reasonable cof} extra d|s§|pat|on in the clpse vicinity of t_he. immersed
putational cost. boundary; this can lead to inaccurate predictions of the

boundary layer development.
3.2.3 Direct forcing On the other hand, local reconstructions of the solution in
This approach consists of an imposition of the velocitthe vicinity of the immersed boundary can be built with high
boundary conditions on the immersed surface without intrdegree of accuracy. Initial work bj18] was based on a
ducing or computing any forcing term. Nevertheless, in ordsimple linear, 1D operatdfig. 1a) and this approach proved
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to be accurate for boundaries largely aligned with grid lines. R—hy\P

On each grid segment intersecting the immersed surface, Mm=(w) (13)
linear velocity reconstruction is obtained using fheerior "

value (point 2 in Fig. B and the wall value point ) the R—h\P

value close to the interface inside the bogpint 1) can q=_2, (—) (14)
therefore be reconstructed. In the general case of curved =11 Rh

boundaries on Cartesian grids a more sophisticated recgfiere 4  represents the solution at a certain locatias,
struction scheme must be used. In Figsabd  linear and onresents the weight, aihd, the distance between the loca-
quadratic 2D stencils are shown. In the linear case, itwo iy (x,y,2) and the location ofp,,; R represents the maxi-
terior values(2 and 3 are used together with the wall value, ;mn

m

(0) to evaluate the solution close to the interfadg Note The method of inverse distance has been successfully
that the triangles in Fig.Hd.are built such that two vertices sed also for the velocity reconstruction at the immersed

always lay in the fluid part. By increasing the support for thg,ngary by Tessicirgt al[41] for the axisymmetric and 3D
interpolation stencil higher order reconstructions can be Ogmple and coaxial jets forming from a curvilinear nozzle.
tained. We point out that in this case the wanderior al-

ways refers to the fluid side, therefore in the node 1 t&2.5 Internal treatment of the body
velocity is reversed in order to prevent the flow from perA few words should be said about the internal treatment of
etrating and slipping on the immersed boundary. The abotfe bodies since the forcings described in Sections 3.2.1-
linear reconstruction has been implemented[17] in a 3.2.3 are only valid at the boundary. For the internal treat-
slightly different way, with the node 1 being the first interioment of the body, there are several possibilities, even if in
and 2 the second interior; only minor differences were fourmlr simulations we have found that the external flow is es-
with respect to the above described procedure, even if thentially independent of the internal conditions.
latter is preferable since reconstructed quantities are not as-A first possibility is to apply the forcing inside the body
signed inside the flow domain. without any smoothing. This is equivalent to imposing the
It is worthwhile to notice that this approach can be conelocity distribution inside the body with the pressure that
sidered as a generalization of thhost cellapproach[39], adjusts accordingly.
where the boundary conditions are imposed by fixing suit- An alternative approach consists of leaving the interior of
able values of the solution outside the computational domdime body free to develop a flow without imposing anything.
(ghost cells. Of course, in this case the flow pattern inside the body will
The stencils reported earlier are suitable to reconstruze different from the previous case, but the external flow is
variables that are smoothly varying without exhibiting larggnchanged.
maxima, it is well known that high order polynomial inter- The last possibility we have investigated is to reverse the
polations are keen to introduce wiggles and spurious ewelocity at the first point inside the body in such a way that
trema. For this reason, more elaborate schemes may be usieshjll results inu=V on the boundary. Again, only the in-
the inverse distance weighted method proposed@4By has ternal flow pattern is different. Note that this internal treat-
the property of preserving local maxima and producingrent was required byl6] in spectral simulations to alleviate
smooth reconstruction. The interpolation at a certain locatitine problem of spurious oscillations near the boundary; this

(x,y,2) is: procedure was used also by Goldstein, Handler and Sirovich
n [12] for their simulations.
_ Extensive testing of these procedures has been performed
X,Y,2)= w / 1 ) .
Pxy.2) le mPm/d (12) to check the influence of the internal treatment of the body
_ - — | =
| L1
A | !
7 1 \ i
ydm yami /T 200
T ©) T 11 @ ®
[o]
©,
(a) & (b) @ (0)

Fig. 1 Reconstruction stencils in the vicinity of the immersed boundarizinear one-dimensional schent®, linear multi-dimensional
scheme, and) quadratic multi-dimensional scheme



338 laccarino and Verzicco: Immersed boundary technique Appl Mech Rev vol 56, no 3, May 2003

on the accuracy and the efficiency of the scheme. We hawéersections between this ray and the given surface are
found that, when using the direct forcing of Section 3.2.8ounted; if the total number is evéadd) the point is outside
there is essentially no influence. Therefore, depending on ttieside the object. The intersection between a @y 3D
particular flow, the easiest treatment can be used. On tegmentand the surfacéa collection of polygonksis carried
other hand, the feedback forcing of Section 3.2.1 requiredit using the geometrical algorithms reported in O’Rourke
smaller values ofw; and B; (in absolute valuewhen the [42]. The RANS flow solver requires only information at the
velocity distribution inside the body was prescribed. Alnodes whereas the LES solver, due to the staggering of the
though this did not affect the external flow, lower values ofariables, requires the same tagging performed at the faces of
a; and B¢ allowed the use of bigger time steps, thus improwach control volumes; this is performed by analyzing the
ing the efficiency. nodes belonging to each face. If all the nodes are ¢alack)

It is useful to point out that the solution in the interior othe face is tagged as degalive); otherwise, it is considered
the domain is discarded and does not influence the physiealan interface.
solution outside; in other words, calculations performed in The RT may fail due to incorrect surface representation
the inside are an unnecessary overhead. On the other hdnuderlapping or missing triangles in the STL jildo over-
for specific applicationglike the study of the conjugate come this difficulty, before tagging any location three per-
solid/fluid heat transfer the ability to compute a solution pendicular rays are casbn a structured grid there are six
inside the solid might be an additional advantage of theriges from every nodleif the corresponding resulbdd or

present technique. even intersectionsis the same, the point is tagged, other-
wise, up to 20 additional random rays are traced, and the
3.3 Description of the boundary immersion most probable result is accepted. Thesalingprocess can be

The immersed objects can be described using CAD prin#ilso approached in a different way by testing the STL file for
tives directly, thus eliminating completely the need for CADINconsistency and by regenerating the surface triangulation
CFD translations. The widely used Stereo-LiThograpHy3]. After completing the tagging, some additional geo-
(STL) format is herein employed; the STL representation ¢petrical quantities are evaluated to perform the interpolation
a surface is a collection of unconnected triangles of sizé¥plained in the previous section.
inversely proportional to the local curvature of the original Two example of the application of this geometrical tag-
surface. This format is already the standard for Bepid 9ing are reported. The first one represents a shark and it is
Prototyping community and all the CAD systems have th&hown in Fig. 2; the model is made up of 40,000 triangles
ability to export a given surface in STL format automaticallyand the solution on a coarse mesh is shown in terms of the
This allows the treatment of any complex geometry withog{ream traces. The second example shows a very realistic
the need to generate a surface meshpifig requirement for sports caxFig. 3); this model is made up of more than half a
the object description is that the given surface must benallion surface triangles, with all the details of the original
closed manifold. This is the same restriction enforced tgometry preserved; in this case, the computed pressure dis-
rapid prototyping tools and guarantees that the final objedt®ution on the surface is reported.
can be produced. The total cost of the tagging and generation of the inter-
The geometrical preprocessor uses the CAD surface de-
scription and the underlying grid to generate all the interpo-
lation data required by the IB Flow Solver. The geometrical
module performs the separatigtagging of the computa-
tional cells in dead (inside the body, alive (outside the
body), and interface (partially insidg. This procedure is
based on a simple Ray TraciqgT) technique normally used
in computer graphics. A random ray which originates from
the location to be checkddrid nodeg is considered and the

Fig. 2 STL model of a hammer-head shark and streamtraces of fig. 3 STL model of a Porsche 911 and computed pressure distri-
computed flow field at Reynolds number of 1,000 bution on the surface at Reynolds number of 100,000
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polation data requires less than 20 seconds for the first @oint of the computational domaJd6]. In this case the grid
ample and about nine minutes for the second one by usinggint locations must be explicitly define@s the distance
underlying grid of about one million grid points on a SGPetween two neighboring points is not consiemit the grid
R12K workstation. connectivity is still implicit in the initial orderindgthe grid is

It is useful to point out that the STL surface triangulatioﬁaidSt_ruqtured' Us_ing unstruct_ured grids, the compuf[ational
is not well suited as surface mesh for unstructured body omain is discretized by a disordered cloud of points and

ted volume grid generation; this is due to the presence n the differential operator cannot be approximated by
grnd g ' P 4 ple formulas as before. Polynomial or least square recon-

highly skewed triangles in regions of low surface curvaturgyctions in the neighbors of each vertex are built to evalu-
ate the differential operators.
3.4 Grid refinement technique If we go back to the Eq(15), we can generalize it to deal

Cartesian methods are extremely effective in capturi%ﬁth local grid refinement. The idea is to introduce a certain

smoothly varying solutions, but have difficulties in dealin
with steep gradients because of the overhead associated ' .
local resolution: even if fine grids are only required in &T can be discretized as:
limited region, grid lines must be extended to the boundary

egree of explicit connectivity but force any grid vertex to
fMe two neighbors on each grid line. The differential opera-

i -
of the domain. In the context of the IB techniques, very az_d’ '?Z_d’: 1 d)'” it d)'” "1
refined grids are often required close to high curvature im- ax*  ay*  Ax; Ax;; Ax;;
:)nrﬁrestred surfaces to properly represent the details of the ge 1 [Sii—di bij— f/’i,j..]
Y. . - . + . —|  (16)
Grid resolution can be easily increased in the framework Ayi; Ayfjr Ay;;
of unstructured meshes by locally inserting grid points and o4 . - S
regenerating the connectivity between the points; the saPﬁQere'iJ » 1ij .+ 1ij » andjy are the only connectivity infor-

B . B . . - + -
procedure for Cartesian grids is not straightforward as it wifration required at each location,j). Ax;;, Axy, Ay,

. P .
destroy the implicit ordering of the mesh points. Many ag"dAYi; are the corresponding grid spacings dnd; , Ay;;
proaches for local grid refinement of Cartesian meshes héOS" averages, re_spectwely. _ _

been proposed:; the most successful is based on the work by S @Pproach is based on the observation that in a Car-

Powell and De Zeeuf#4] and Pembeet al [45]. It is based teSian mesh the locally refined grid can be viewed as a finer
on the idea obctreedata structure in which every computa-gIOba”y refined mesh with some grid lines partially deleted.

tional cell can be subdivided in fougight in three dimen- I_n Fig. 4 the central region of the grid is refined but 'Fhe grid
siong children-cells. The main difficulty associated with thiéInes are extended to the boundary of the computational do-

technique is the inherent complexity of the solution amd’pamgln thls_waé/, "’II'(’]) (cj)rdermg oflthe \;]ertmee'mknowns i
rithm, which is reflected in high computational costs ang?" Pe retaine - IN oraer to exploit the savings occurring
memory requirements. with the local refinement strategy, unknowns located outside
On the other hand, for Cartesian grids, mesh coordin:ﬂbe central zone on the dashed lines are not considered in the
directions can be identified and used to number the cells a[rln"c?_blem'_ The_d|scret|zat|on formu[aG)_can be used to link
nodes. Thus, in two dimensions a cell is identified by its wctive grid points across the dashed lines, for example at the

indicesi andj in the mesh coordinate system, and its neigi#c-)c"’lti(,)n (—1j ,_1) _wherg the pointit-1j+1) will be
bors are located by incrementing one of these indices. ed msteaQ ofi¢-1). Tr_ns procedure can be repeqtgd for
unstructured meshes this is no longer possible, since, in p __the _Ioca_t|ops reported in .F|g. 4’,bUI nc_)t for the pOIngI .

ciple, the cells and nodes are not ordered. The use of unstr) lich is missing the left neighboring point. This location is

tured meshes requires the storage of connectivity informatiIBﬁ"e;d (”: the u'nstrtl:ct'ure(;i cion.texa halnglng node and. the
along with the use of an indirect addressing system. ocal solution is obtained via interpolatiomeconstructioh

If we consider the discretization of an elliptic operatof‘rom surroundings points. A detailed discussion of the imple-
(for example, the diffusion terms in the 2D Navier-Stokeglemation and accuracy issues related to the local grid refine-
Egs.(2)), we can write a central second order finite different 'Sd outside the scope of the present review but it is
ence discretization on a Cartesian grid as: reported in[47].

072_¢+‘92_¢:i ¢i+l,i_¢i,j_¢i,j_¢i—1,j
x> ay?  Ax AX AX

+i bij+1— b dij—Dij-1
Ay Ay Ay

whereAx andAy are the mesh spacing in the two directions----1-- i R il
Ax and Ay can depend, respectively, armandy and in this
case the mesh is nonuniform. This discretization is obvious
limited to regular brick shaped physical domains. A more
general representation can be obtained using curvilingag. 4 Cartesian mesh with local mesh refinement: dashed lines
grids, where three sets of coordinate lines intersect in ea@present grid lines that are partially deleted

(15)

P, I o s oo j

1 1
I 1
AR -1 i i+l 42
1 1
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As discussed in the previous section, the correct represéairly classical problems and the objective is to demonstrate
tation of curved immersed boundaries requires fine underljpe accuracy of the present technique as compared to stan-
ing grids; an automatic grid enrichment technique has bedard body fitted approaches. The third and fourth problems
developed using the geometrical tagging introduced in thikistrate the ability of the IB technique to handle problems
previous section and the ability to treat hanging nodes. With moving boundaries; more in detail, the third example
Fig. 5, a curved boundargrepresenting the letter)ks im- has a truly moving boundary while the fourth as an impeller
mersed on an underlying uniform griffig. 5a). The tagging rotating at a constant angular velocity which, therefore, is
functionT is shown for the initial coarse mesh; the dark arefixed in the rotating frame of reference. The last one is an
corresponds to internal cellsTE —1) whereas the white industrial-like problem and shows that the IB approach can
area corresponds to fluid cell§€1). The inverse of the be used as a design tool to evaluate the effect of different
numerical gradient of this function is also reported: its valugeometrical configurations without the need to regenerate
is proportional to the local grid size. By successively halvingomputational grids.
the cells until this gradient exceeds a prescribed value, the
grid and the corresponding sharper geometrical represerftal Flow around a cylinder
tion in Fig. & is obtained. Note that the values of the gradifhe flow around a circular cylinder has been extensively
ent are increasinghe inverse is reportedrom left to right  studied both numerically and experimentally for several de-
in Fig. 5 because of the decreasing grid size. As an exampiades. This flow, in fact, from one hand, is sufficiently
in Fig. 6, a calculation is carried out around the letters FP§imple to be analyzed in great detail while, on the other

using a grid adapted with the same procedure. hand, still retains the physics of more complex flows. The
flow regime is strongly dependent on the Reynolds number,
4 EXAMPLES Re (based on the diamejeiit develops a steady symmetric

: . . . recirculation for Re=40. while it sheds counter rotating 2D
The IB approach in conjunction with the LES or the RAN§aminar vortices up to Re190. From 196:Re<260 the

simulation code has been applied to several problems; in §}&.jing becomes 3D with span-wise perturbations of four
following, five test cases are reported. The first two represe-t’n)}”nder diameter wavelength while for higher Reynolds val-

ues the perturbations develop on a finer scale, around one
cylinder diameter. Given the low Reynolds values, all the
described regimes are amenable to direct numerical simula-
tion and they have been studied by many researdsessthe
review by Williamson 48] and references thergirirhis flow

is also an interesting benchmark for the immersed boundary
methods since the flow dynamics is governed by the separa-
tion of the boundary layer from the cylinder surface. This
implies that inaccurate treatments of ttimmersed body
surface would result in unphysical perturbations on the layer
and, therefore, in altered dynamics. The direct numerical
simulation of this flow up to Re300 with an immersed
boundary method has been carried out by Orlatdil [49]

(@ (b) (© (9

Fig. 5 Example of the automatic grid refinement strategy for im-
mersed boundaries: Computational grigisp), heavyside tagging
function (middle), and numerical derivative of the tagging function
(bottom); a to d represent successive levels of refinement

Fig. 7 Mean streamwise velocity on the center line of the wake of
a circular cylinder at Re3900: [0 experimental results by
Lourenco and Shifi50], ¢ experimental results by Ong and Wal-
Fig. 6 Flow simulation around the FPC letters at Reynolds nurtace [51], ——dns on a 4%129x193 grid, — — —les with a dy-
ber 10,000 namic SGS model on a 42129x193 grid
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02 Fig. 8 Mean (lefty and rms
L ; (right) cross-stream profiles of
o 0 Bl | e a Pﬁ;&m streamwise velocity in the wake
2 N A~ \ / ’ of the cylinder. Sections are
‘:: 5 %o TR \/ Vi mne s el sampled at 1.06, 1.54, and 2.02
= x/d=1.54] | k\ / x/d=1.54 cylinder diameters downstream.
I S The symbols are the results by

o 1 \\x: A x/d=2.02 Kravchenko and Moin [52],

’ \ x/d=2.02 N ’ ——dns on a 4%129x193 grid,

e 4 = 7 5 5 2 > P P 2 s — — —les with a dynamic SGS

0 0
y/d y/d model on a 4&%129x193 grid.

confirming the above described findings and showing tmeetric of the mesh was not smooth enough and this intro-
capability of the method to capture the viscous boundaduced numerical errors when computing finite difference de-
layer separation. rivatives. This problem was more severe for the LES simu-

When the Reynolds number is increased up to 120@n lation than for DNS since in the former case the sub-grid
if in the literature scattered values in between 300 and 1266ale model requires the computation of the strain field in
are reported50]) the shear layers separating from the cylinerder to parameterize the turbulent stresses. This finding was
der become unstable and the shed vortices contain fine saalexpected since inaccuracies in a dynamically passive re-
structures. As a consequence, the cylinder wake experiengem were supposed to have negligible influence on the so-
a dynamics different from that at lower Reynolds as expetiition and, if any, certainly not on the mean flow statistics.
mentally shown inf51] and[52] at Re=3900. At this Rey- We wish to stress that, although accidental, the above mis-
nolds number, direct numerical simulation, although affordake was instructive since, while it is clear that a symmetric
able by modern supercomputers, has never been attemptgti must be used for the flow around a circular cylinder, the
while large eddy simulation has been successfully employeghoice is not obvious for an arbitrary object; the sensitivity
Kravchenko and Moin53] have used B-splines on bodyof the LES solutions to thgrid quality is therefore an im-
fitted meshes obtaining a good agreement with experimergsrtant factor to be accounted for in the LES of complex
These results were fully confirmed by Bre(i4] which also flows.
addressed the effect of the span-wise domain dimension.

The simulation of this flow by an immersed boundar)i_2 Flow in a wavy channel

approach poses a two-fold challenge, since the boundar . ) . . .
bp P g ! . e flow in a wavy channglFig. 9) is characterized by in-

layer developing at the cylinder surface is very thin and thi o
must be captured with a non-body-fitted grid. In addition, thgeased turbulence levels close to the wall with improved

flow separation strongly depends on the wall dynami&eat and mass transfer performance._Laminar and weakl_y
which, in turn, requires the appropriate behavior of the SUBJ_rbulent f'QWS h'ave been gnalyzgd using DNS .by Leonardi
grid scale model at the wall. The results of Figs. 7 and 8 ha@@d Orlandl[56] in order to investigate the physics of wall
been obtained by Tessicifi65] by a second order Centralturbulence in the presence of surf_ac_e roughness. In the
finite difference code on a Cartesian mesh with a dynanfléeSent case, the Reynolds number is in the range of 10,000
sub-grid scale model. The grid hadX929x 193 points, re- to 100,0QO, therefor_e still relatively low, but r_1evertheless the
spectively, in the span-wise, cross-stream, and stream-v»’?ggblem is challenging for turbulence modeling. Kuzan’s ex-
directions and the computational domain wa®, 30D perimental measuremerits7] are used to evaluate the accu-
30D in the same directiond being the cylinder diameter; racy Qf RAN_S siml_JIations performed _using the IB te.chnique.
the mesh was uniform in the span-wise and nonuniform fhddmonal simulations performed using the body fitted ap-

the other directions in such a way as to cluster the nodBanCh (with the original code developed by Rogers and
around the cylinder and downstream in the wake. These }%v_vak [58)) are also presented.

sults show a satisfactory agreement with experiments and

numerical simulations available from the literature and, simi-

larly to Breuer’'s[54] findings, the flow in the region around x/H=0.25 x/H=0.75

the cylinder has little sensitivity to the turbulence mode i

while it has a positive effect for the downstream wake evao
lution (Fig. 7).

One interesting feature of these results is the discrepan
of the LES simulation with respect to the simulation without
sub-grid scale model and the results [8] in the region
y/d=2 (Fig. 8). This was found to be due to the uneven
distribution of the grid points owing to an enlargement of the
computational domain obtained Ipatchingan extra strip to Fig. 9 Sketch of the wavy channel problem with the location of
an old computational domain. In that region, therefore, thise measured velocity profiles

Flow
—_—
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The wavy bottom wall has a sinusoidal shape whose atmettom wall(Fig. 1), whereas the third is locally refined in
plitude and wave length are 0.1 m and 1.0 m, respectivetie region close to the immersed bottom wi#lig. 1(c).
Since the flow is periodic, the computational domain can be The solution is reported in Fig. 11 in terms of the stream-
chosen to cover only one period of the wavy channel. Tiése velocity component; a large recirculation region is
length of the periodic domain is 1 m. Experimental data agsesent downstream of the wavy pe@ashed lines this is
available in two sections corresponding to the valley and ti§@ptured by the body fitted and the locally refined grid in a
peak in Fig. 9. The Reynolds numbgrased on mean chan-Very similar way, while somewhat underpredicted by the uni-
nel height and the mass flovis about 8000. form Cartesian mesh. This is confirmed by the analysis of the

The computational grids are reported in Fig. 10. The firgelocity profiles reported in Fig. 12. Very good agreement
one(Fig. 10a) is a body fitted mesh made up of 2080 grid between the experiments and the calculations performed on
points with strong clustering at the channel walls. The sethe body fitted and the locally refined grid is observed; the

ond is a Cartesian mesth00x60) underlying the sinusoidal calculation on the uniform Cartesian mesh captures the
qualitative behavior of the flow but fails to capture the cor-

rect amount of separation. This clearly indicates the need for
a very highly refined grid close to curved immersed bound-
aries to correctly represent sharp flow gradients.

(c)

4.3 Flow in a pistoricylinder assembly

The flow in an axisymmetric piston/cylinder assembly with a
fixed valve has been simulated using both the LES and the
RANS solver.

The configuration is reported in Fig. 13 and experimental
measurementgphase averaged mean and RMS radial pro-
files of axial velocity are availablé59] for the validation of
the numerical results. In the experiment, the piston was ex-

Fig. 10 Computational grids for the wavy channel RANS simuld€rnally driven so that the fluid flowed into the cylinder from

tions: a) body fitted grid,b) Cartesian mesh, amg locally refined
Cartesian mesh

(b)

T ——
P S—
W e
% % g \\\\g\
== e N

Fig. 11 Streamwise velocity component at=RRD00 (dashed line
represent negative values) body fitted grid,b) Cartesian mesh,
andc) locally refined Cartesian mesh

outside during the downward piston motion and vice versa
when the piston moved up. Since the valve was fixed and a
tiny annular gap was left open between the valve and the
cylinder head, the compression phase is not included in the
flow dynamics(the working fluid is still assumed to be in-
compressible The piston was driven by a simple harmonic
motion at a speed of 200 rpa21 rad/s which for the present
geometry yields a mean piston speedVpf=0.4 m/s(when
averaged over a half cygleThe Reynolds number of the
flow based oV, and on the piston radius is R2000 in air.

In Verziccoet al [18], all the details of the computation
and the boundary conditions are given. In this paper we only
mention that at the lower surface a prescribed mass flow is
assigned with a constant axial velocity profile in such a way
as to preserve the free divergence in the region between the

Fig. 12 Streamwise velocity
component profiles compared
with the experimental data
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lower boundary and the piston. At the upper boundary, cotire present LES results are also compared to simulations

vective boundary conditions are used as extensively exbtained using an unstructured boundary fitted, deformable

plained in[18]. mesh; the quality of the results is comparable even though
In Fig. 13, snapshots during one instant of the oscillatif§e immersed boundary technique is much less expensive.

cycle are given and the high three-dimensionality of the flow

can be appreciated from the vector plots in orthogonal sec-

tions. Radial profiles of axial velocity were obtained by.4 Flow in a stirred tank

phase averaging the fields over four cycles and then averag@ | ES and RANS solvers have been used to investigate
in the azimuthal direction. Three profiles at different axiahe flow in a cylindrical unbaffled tank stirred by an impeller
locations are shown in Fig. 14. The comparison with thgcated at mid-height of the tank, rotating at constant veloc-
experimental data shows that the LES results are alwaysitp () [61]. The impeller has eight blades equispaced over
better agreement than the RANS, but overall both solutiofife whole azimuthal span; a sketch of the device is given
represent the flow appropriately. In Verzicebal [18], LES in Fig. 15.

velocity profiles in additional sections and RMS profiles of A computational grid made up of 192102x97 nodegin
axial velocity are also reported consistently showing a vetiie vertical, radial and azimuthal direction respectiydigs
good agreement with the measurements. In Hawpsti, been used. The grid is uniform in the azimuthal direction and
a section of it is reported in Fig. 15. The Navier-Stokes Egs.
(2) are solved in a frame of reference fixed with the impeller
and therefore rotating with constant angular velo€ityThe
extra termd are prescribed at each time step to establish the
desired velocityV,= 0 (in the rotating framgon the impel-

ler and shaft surfaces. On the external cylindrical wall of the
tank, a constant azimuthal velocity is imposé&f,(R)

=— QR (whereR s the radius of the tankwhile the bottom
horizontal no-slip surface moves accordingMg(r)=—Qr

with r the radial coordinate. A slip boundary condition is
imposed on the upper boundary of the computational do-
main. The Reynolds number based on the rotational speed
and the blade radiusR;) is Re=1636.

Indeed, we have verified that the moderate value of the
Reynolds number and the fine grid used were such that the
sub-grid scale turbulence model was essentially inactive and
LES and DNS results were indistinguishable. The results are
presented in Fig. 16 in terms of azimuthally averaged veloc-
ity vectors, instantaneous velocity magnitude and turbulent
kinetic energy. The meridional plane is roughly divided into
two halves by the radial jet emanating from the impeller. The
two recirculation regions are not symmetric owing to the
different boundary conditions on the upper and lower hori-
zontal surfaces. The flow is strongly unstea@dg evident
from Fig. 1®); in the meridional recirculation, it is essen-

j g tially dominated by the rotation period of the impeller, while
,)}_,l.nf:&\\ ! e ~\  the flow in the jet has a wide frequency content, ranging
e e % s from the slow vertical flapping up to the fast vortex shedding
TT——y NGOG LR from the impeller blade tip$62]. In addition, the flow is
e strongly inhomogeneous in space with quiet and laminar-like
recirculation far from the impeller and a turbulent jet region
at the center of the taniEig. 16c).
Fig. 13 Contour plots of azimuthal vorticity and velocity vectors Quantitative comparisons between the present simulations
projected onto 2D cutting planes for a 3D case with azimuthal peind experimental data is reported in Fig. 17 in terms of radial
turbation at Re=2,000, 65¢65x151 (91X 2) grid, dynamic Sma- jofiles of azimuthal, radial, and vertical velocity compo-
gorinsky subgrid-scale turbulence model. Vorticity scale solid lingg, 15 The present results are in very good agreement with
(—) indicate positive values, dotted linés - - -) indicate nega- L . .
tive values, and the increment between adjacent isocontoursﬂ?g megsurements, n partlcularz the peaks of the azimuthal
v and radial velocity close to the impeller are very well cap-

Aw=*25V,/b: @) t==/2, azimuthal vorticity;b) t= /2, pro- o . .
jected velocity vectors, meridional plane); t= /2, projected ve- tured. RANS predictions show large discrepancies, espe-

locity vectors, 15 mm below the head); t= 7, azimuthal vorticity; Cia'_'Y in terms Of_ the r_adia| velocity, which is strongly over-
e t=m, projected velocity vectors, meridional plane; afidt estimated. This is mainly due to the presence of large scale

=1, projected velocity vectors, 15 mm below the head. unsteadiness and inhomogeneous turbulence.
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Fig. 14 Radial profiles of averaged axial velocity components at different locations in the cylinder. Symbols: Expg5@ler@slid
Line: LES simulation; Dashed line: RANS simulations

4.5 Flow around road vehicles simulations are performed on a Cartesian grid made up of

The LES solver with the IB approach has been used to simRR0X140x257 points in the stream-wise, vertical, and span-

late the flow around a square back road vehicle with drdy§se directions, respectively.

reduction appendices attached to its base. The objective is tol "€ experimental Reynolds number based on the free

study the unsteady dynamics of the wake and the modifica-

tions induced by the drag reduction devices; experimental

data are available for comparisg83].
The baseline configuration is reported in Fig. 18; tH.

HH sy s
Tty s«
i~ «
i
1,
It
I//,,,,
e

(a) (c)

Fig. 16 Contour plots of azimuthally averaged velocity vectors:

Fig. 15 Tank configuration and computational grid in a meridiond), instantaneous velocity magnituds), and turbulent kinetic en-
plane(only one every six grid-points are shown ergy, ¢ in a meridional plane crossing a blade

(©)

(a) (b)

0.2

0.9
0.8
07}

Z 0.6
- 05}
S 04
0.3
0.2

0.1

r (cm)

r (cm) r (cm)

Fig. 17 Radial profiles of averaged velocity components in the middle of the tank. Symbols: Expefié@n8olid line: Present LES;
Dashed line: RANS simulation$1]
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Fig. 20 Flow patterns in the symmetry plane superimposed to con-
Fig. 18 Road-vehicle configuration and computational grid in th®urs of time-averaged streamwise velocity:=2#,000a) Baseline
symmetry plangonly one every four grid-points are shown square-back geometry) Square-back with base plates,Boat-tail
base

stream velocity and the model heigfi) is Re=170,000.
Preliminary simulations were carried out assuming that tfide flow patterns in the near wake recirculation region are
main features of the flow and the corresponding trends in tiery different; the results for the baseline square back con-
flow dynamics at the back of the body were independent iguration show a strong interaction between the base recir-
Reynolds number if this was sufficiently high. Accordinglyculation and the boundary layer on the bottom wall. A more
the Reynolds number of the numerical simulations was fixé@p to bottom symmetric wake is obtained with the other two
at Re=20,000; it was observed that, indeed, the numerice@nfigurations; for these two the base pressure is higher than
simulations showed all the trends and the flow features digr the square back and, therefore, the drag is lower.
served in the experiments. However, some quantitative dif- The high Reynolds number results have also been com-
ferences were present. For this reason, additional simulatigi&ed to the experiments in terms of drag co-efficients; a
have been performed at R&00,000 showing a much bettervalue of 0.291 for the square back and 0.223 for the boat tail
quantitative agreement with the experimental data. Quanti#ere computed from the LES simulations, whereas 0.3 and
tive results are reported in Fig. 19 in terms of time averagé®23 were the corresponding measurements. Additional
stream-wise velocity profiles in two sections downstream @halyses were carried out to study the unsteady dynamics of
the base for the square back configurations. The measufe flow (for the three configurationsthe wake of the base-
ments are compared with two LES simulations performed lte geometry is characterized by a low frequency stream-
Re=20,000 and Re100,000; the high Reynolds numbewise pumping a strong vertical flapping, and high frequency
simulations agree very well with the experiments. The defe¢@rtex pairing in the shear layers detaching from the body.
velocity as well as the length of the recirculation region arEhe low frequency modes are strongly suppressed by the
accurately captured. The low Reynolds number simulatiof§ag reduction devices; the same behavior was observed in
agree qualitatively with the measurements but strongly ovéhe experiments. Additional comparison and detailed discus-
predict the thickness of the bottom wall boundary layer. sion of the results are reported in Verzicebal [64].

The LES flow solver in combination with the IB tech-
nique was then used to study the influence of modification 8f CONCLUSIONS

the geometry of the back of the vehicle on the wake dynamy yhis review, we have reported some recent results on the
ics and overall drag coefficients. The use of a the Cartes'&ﬁplication of the Immersed Boundary Method to LES and
mesh reported in Fig. 18 allows to perform the simulationgans tyrbulent flow simulations. The Immersed Boundary
very efficiently without the need to regenerate a cCOmputggyach allows the use of simple and efficient numerical
tional grid for every configuration. techniques on regular grids for simulations of fluid flow
Q_ualltayve results are reported in Fig. 20 for the thre&round complex configurations; the complexity of the geom-
configurations analyzed and for the lower Reynolds numbglhy is accounted for only in the governing equations using
additional terms. Details of the forcing definition and the
treatment of the immersed surfaces have been discussed and
two techniques for predicting turbulent flows have been
used, the standard Reynolds-Averaged Navier-Stokes and the
more advanced Large Eddy Simulations. Several examples
have shown the efficacy of the IB technique in simulating
complex, turbulent flows using simple Cartesian-like
meshes.
B Although the discussed examples encourage the use of the
0.0 L a— 03 10 present approach for complex, industrially relevant applica-

/Ui ' - W tions, there are a number of points that still need a detailed

Fig. 19 Streamwise velocity profiles in the wake for the squardlvestigation. _ _ _
back configuration. Symbols: Experimef62]; Dotted line: LESat ~ For example, the local grid refinement technique de-
Re=20,000; Solid line: LES at Re100,000. scribed in Section 3.4 was shown to work very well in com-

1.5
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bination with RANS modeling, while nothing is known [17]
about its application to LES simulations. This is a crucial
point since the need for grid resolution close to solid walls ig g]
the main limitation to the application of LES to high Rey-
nolds flows. This observation shifts the focus on the receﬂtg]
wall models for LES described by Balaras and Ben¢é6i,
Balaraset al [66], Cabot[67] and Cabot and Moir{68]
which have been successfully used with body fitted mesh
[69,70, while they have never been integrated in Immersed
Boundary solvers. We believe that a combination of LES
turbulence modeling with the appropriate wall treatment a
the Immersed Boundary approagiossibly with a local grid
refinement would make LES an industrial production tool,[22]
similarly to the present RANS simulations.
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