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Immersed boundary technique
for turbulent flow simulations

Gianluca Iaccarino
Center for Turbulence Research, Stanford University, CA 94305-3030; jops@ctr.stanford.edu

Roberto Verzicco
DIMeG and CEMeC, Politecnico di Bari, Via Re David, 200, 70125, Bari, Italy;
verzicco@poliba.it

The application of the Immersed Boundary~IB! method to simulate incompressible, turbulent
flows around complex configurations is illustrated; the IB is based on the use of non-body
conformal grids, and the effect of the presence of a body in the flow is accounted for by
modifying the governing equations. Turbulence is modeled using standard Reynolds-Averaged
Navier-Stokes models or the more sophisticated Large Eddy Simulation approach. The main
features of the IB technique are described with emphasis on the treatment of boundary condi-
tions at an immersed surface. Examples of flows around a cylinder, in a wavy channel, inside
a stirred tank and a piston/cylinder assembly, and around a road vehicle are presented. Com-
parison with experimental data shows the accuracy of the present technique. This review ar-
ticle cites 70 references.@DOI: 10.1115/1.1563627#

1 CONTEXT

The continuous growth of computer power strongly encour-
ages engineers to rely on computational fluid dynamics
~CFD! for the design and testing of new technological solu-
tions. Numerical simulations allow the analysis of complex
phenomena without resorting to expensive prototypes and
difficult experimental measurements.

The basic procedure to perform numerical simulation of
fluid flows requires a discretization step in which the con-
tinuous governing equations and the domain of interest are
transformed into a discrete set of algebraic relations valid in
a finite number of locations~computational grid nodes! in-
side the domain. Afterwards, a numerical procedure is in-
voked to solve the obtained linear or nonlinear system to
produce the local solution to the original equations. This pro-
cess is simple and very accurate when the grid nodes are
distributed uniformly~Cartesian mesh! in the domain, but
becomes computationally intensive for disordered~unstruc-
tured! point distributions.

For simple computational domains~a box, for example!
the generation of the computational grid is trivial; the simu-
lation of a flow around a realistic configuration~a road ve-
hicle in a wind tunnel, for example!, on the other hand, is
extremely complicated and time consuming since the shape
of the domain must include the wetted surface of the geom-
etry of interest. The first difficulty arises from the necessity
to build a smooth surface mesh on the boundaries of the

domain~body conforming grid!. Usually industrially relevant
geometries are defined in a CAD environment and must
translated andcleaned~small details are usually eliminated
overlapping surface patches are trimmed, etc! before a sur-
face grid can be generated. This mesh serves as a sta
point to generate the volume grid in the computational d
main.

In addition, in many industrial applications, geometric
complexity is combined with moving boundaries and hi
Reynolds numbers. This requires regeneration or defor
tion of the grid during the simulation and turbulence mod
ing, leading to a considerable increase of the computatio
difficulties. As a result, engineering flow simulations ha
large computational overhead and low accuracy owing t
large number of operations per node and high storage
quirements in combination with low order dissipative spat
discretization. Given the finite memory and speed of co
puters, these simulations are very expensive and time c
suming with computational meshes that are generally limi
to around one million nodes.

In view of these difficulties, it is clear that an alternativ
numerical procedure that can handle the geometric comp
ity, but at the same time retains the accuracy and high e
ciency of the simulations performed on regular grids, wou
represent a significant advance in the application of CFD
industrial flows.
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In order to use regular Cartesian-like meshes, the requ
ment that the grid is conforming to the domain bounda
must be relaxed. The basic idea is to consider the discre
tion of a simple, fictitious computational domain obtained
eliminating the complex object of interest~ie, the road ve-
hicle in the example cited above!. In order to obtain a real-
istic simulation, the effect of the presence of the object
the flow must be included in the problem. This can
achieved by introducing appropriate extra terms in the g
erning equations. Several approaches have been deve
by using this concept and the main differences are relate
the definition of the additional terms or, more in general,
the discretization schemes used in the vicinity of theim-
mersedsurfaces; in the next section an overview of differe
flavors of this approach is presented. The details of vari
forcing schemes are then described together with two
proaches used for the simulations of high Reynolds num
turbulent flows. In addition, a proposed scheme for grid
richment in the neighborhood of an immersed surface is
scribed.

Several examples of the application are reported to d
onstrate the accuracy and flexibility of this technique.

2 BACKGROUND

The Immersed Boundary~IB! technique allows the solution
of differential equations in complex geometric configuratio
on simplemeshes by introducingforcing conditions on cer-
tain surfaces corresponding to the physical location of
complex boundaries; the simulations are then performed
much simpler domain. This idea has been pursued by m
researchers in the last three decades. To the authors kn
edge, the first example is due to Vieceli@1# that extended the
Marker and Cell~MAC! method@2,3# to include boundaries
of arbitrary shape. The basic idea consisted of treating
fluid-boundary interface as a free surface and to impose t
pressure boundary conditions so that particles could m
only along the tangent to the boundary line. This proced
led to an iteration between pressure and velocity fields u
flow incompressibility and boundary impermeability we
both satisfied. The method, referred to as ABMAC~Arbitrary
Boundary MAC!, was generalized in a successive paper@4#
to cope with moving walls and in this case, in addition to t
pressure, velocity boundary conditions were also impose
the interface. This technique allowed the treatment of w
moving with a prescribed law or moving as a consequenc
the forces exerted by the fluid on the surface.

Peskin@5,6# reports, at the beginning of the 1970s, sim
lations of the blood flow in the heart/mitral-valve syste
assuming a very low Reynolds number and 2D flow. Thr
dimensional heart flows that also included the contractile
elastic nature of the boundary were considered success
by Peskin@7# and McQueen and Peskin@8,9#. In Peskin’s
formulation, the fluid equations~incompressible Navier-
Stokes equations! are solved on uniform Cartesian grids a
the elastic fibers of the heart walls areimmersedin the flow:
fluid and fibers exert time varying forces on one another
Lagrangian coordinate system moving with the local flu
velocity is attached to the fibers and tracks their location
ire-
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space; the information about the position of the fibers a
their forcing on the fluid is transferred to the Eulerian und
lying mesh where the flow solution is obtained. In this pr
cedure, the resulting forcing consists of delta functions
cated on the first cells external to the immersed body wh
therefore, can not be adequately represented on a finite
mesh. For this reason, a smooth transition between the e
nal fluid and internal body cells is introduced which
equivalent to spreading the delta function over a narrow b
~typically three or four nodes! across the boundary.

The problem of heart modeling is complicated by the fa
that the boundaries of the computational domain are mov
and respond to forces~typically the pressure and viscou
stresses! depending on the local flow conditions. In contra
if the boundary configuration is fixed and known, the co
putation of the interaction between the fluid and the i
mersed surfaces is much simpler. In principle, Peskin’s
proach can be applied directly by decreasing
deformability of the elastic fiber; in practical terms, this w
result in a numerically stiff problem.

The first applications of the IB approach to problems w
solid, indeformable immersed surfaces were carried out
Basdevant and Sadourny@10#, Briscolini and Santangelo
@11#, and Goldstein, Handler and Sirovich@12#.

Briscolini and Santangelo@11# used an immersed bound
ary approach~referred to as mask method, which was
modified version of that by Basdevant and Sadourny@10#! to
compute the unsteady 2D flow around circular and squ
cylinders at Reynolds numbers up to 1000 whereas G
stein, Handler and Sirovich@12# considered the 2D start u
flow around a circular cylinder and 3D plane- and ribbe
turbulent channel flow. In these works, the IB approach
used in conjunction with spectral methods and the forcing
applied in a band~consisting of three to four computationa
nodes! around the interface. This was required to reduce s
rious oscillations appearing in the solutions. On the ot
hand, Saiki and Biringen@13# used the forcing of@12# to
compute the flow around steady and rotating circular cy
ders using fourth order central finite-difference approxim
tions. The use of finite-differences avoided the appearanc
spurious flow oscillations at the boundary even if in that ca
the forcing was also spread across the boundary using a
cedure that the authors refer to asfirst order accuratesimilar
to the delta function of Peskin@5#.

The main drawback of the forcing introduced in@12# is
that it contains two free constants that need to be tuned
cording to the problem being solved; in particular, for u
steady flows this forcing introduces a time step limitati
that reduces the efficiency and the applicability of t
method ~see Section 3.2.1 for a detailed description!. An-
other disadvantage of the described methods is that, in o
to avoid equation stiffening and unphysical flow oscillation
the boundary forcing terms are spread across the boun
which therefore is smeared over the grid, thus decreasing
solution accuracy.

In the framework of general PDEs, the mathematical f
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mulation of the problem has been described by LeVeque
Calhoun@14#; a simple 1D unsteady diffusion equation wi
a moving interface was considered:

f t5fxx1c~ t !d~x2a~ t !! (1)

where a(t) represents the interface location~immersed
boundary! andc(t) the solution value ina(t).

The discretization of Eq.~1! requires the use of an ap
proximation tod:dh . The authors derived constraints to im
pose ondh to ensure high order accuracy at the immers
boundary. No such guidelines are available in general, ie,
the 3D Navier-Stokes equations. Nevertheless,a posteriori
analysis has shown that it is possible to achieve second o
accuracy in practical applications@15#.

Mohd-Yusof @16# derived an alternative formulation o
the forcing that does not affect the stability of the discr
time equations and does not require forcing smoothing
addition, no user-defined parameters were used in the for
lation of the forcing function, making it flow independe
~see Section 3.2.3!. In @16# the new forcing was combine
with B-splines to compute the laminar flow over a 3D ribb
channel, showing substantial improvements with respec
the previous formulations. This discrete time forcing sche
was originally developed in a spectral context and has a
been successfully applied to flows around cylinders a
spheres, at moderate Re.

Recently, the same idea of forcing has been used by@17#
and @18# in the framework of a finite-difference Large-Edd
Simulation code. The applications included the flow arou
simple and complicated geometries in a large range of R
nolds numbers. Some of these results are reported in
following.

Before concluding this section, we wish to stress that
above described techniques can all be gathered unde
name of Immersed Boundary methods which are the ob
of the present review. There are other procedures, howe
that rely on a similar philosophy and differ in technical d
tails. For the sake of brevity, we will not review these a
proaches, but we will give in the following a short descri
tion in order to provide the interested reader with additio
references.

A class of methods calledpenalty methodsor fictitious
domain methodsor domain embedding methodsassumes the
immersed body as a porous medium and solves the Na
Stokes-Brinkman equations; these are the Navier-Sto
equations with the addition of a term of volume drag, cal
Darcy drag, which accounts for the action of the porous m
dium on the flow. When the medium permeabilityK tends to
zero, the medium behaves as a solid body and the fl
around an arbitrary shaped object can be studied. A deta
description of the method can be found in Khadraet al @19#,
Khadraet al @20#, Angot et al @21#, Kevlahan and Ghidaglia
@22#, and references therein; in this context we only wish
stress that when viewed from the perspective of the
mersed boundary methods, the penalty methods can be
sidered as a particular case of the forcing by@12# and @13#,
even if with a completely different physical meaning. Th
will be briefly shown in Section 3.2.2.
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A different technique, calledCartesian Grid Method, also
relies on non-body-fitted meshes to describe the flow aro
complex geometries. In this case, however, instead of add
forcing terms to the governing equations, the grid cells
modified at the body interface according to its intersectio
with the underlying grid. Given the large number of possib
intersections, this generates a wide variety ofcut interface
cellswhich must be handled in a separate way depending
their topology; nevertheless, finite volume methods ha
been successfully used for the calculation of complex
flows @23#. In the framework of finite volume discretization
the transfer of information from the embedded surface to
underlying Cartesian grid needs special treatments to sa
conservation laws on the physical domain. As already m
tioned, this results in irregularly shaped cells~Cartesian
mesh cells cut by the interface! at the boundaries in which a
flux balance must be performed. Various flavors ofcell cut
algorithms have been developed by Aftosmis@24# and Forrer
@25#. The pacing item in applying finite volume schemes
Cartesian meshes has been the stiffness associated with
cells cut at the boundaries; recently Yeet al @26# proposed
cell merging schemes that alleviate this problem by agglo
erating the smallest cell to their closest neighbors. Ini
accuracy assessments have been carried out by Coirier@27#
for the compressible Navier-Stokes equations and
Almgren et al @28# for the Poisson equations; full secon
order accuracy was only obtained considering the cells
intersected by the boundaries. In the more recent analysi
Ye et al @26#, second order accuracy has also been repo
at the boundary.

Finally, an entire class of numerical techniques has b
developed to handle moving interfaces~of various physical
nature! on a fixed grid. Two of these techniques are the V
ume of Fluid~VOF! approach@29# and the Level-Set tech
nique@30#. An example of applications for the first techniqu
is the tracking of interfaces between different fluids~ie, free
surface flows! and for the second is the propagation of flam
in combustion modeling@31#. These techniques might b
adapted to deal with solid interfaces~representing and objec
in a fluid stream! and therefore used in a context similar
the IB method.

3 NUMERICAL TECHNIQUE FOR
THE NAVIER-STOKES EQUATIONS

In this section, a numerical technique for the solution
Navier-Stokes equations based on the IB approach is
scribed. The simulation of the flow around a solid obje
requires the generation of a computational grid covering
domain of interest without the object and a geometrical
scription of the object~in general, a surfaceS!. The govern-
ing equations are solved on theunderlyingmesh and aforc-
ing term f is introduced to model the effect of the presence
the body on the flow evolution. This term is evaluated su
that a desired velocity distributionVS can be assigned ove
the boundaryS. We wish to stress that the presence off in
Eq. ~2! does not imply, necessarily, a force acting on t
fluid; in fact, while the expression off by @5,12#, and @13#
indeed represents the action of the surface on the flow,
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formulation by@16# is equivalent to a velocity boundary con
ditions inside the domain. The Navier-Stokes equations
an incompressible fluid~with densityr and viscosityn! in
3D are:

Du

Dt
5

]u

]t
1u•¹u5n¹2u2r21¹p1f, ¹•u50 (2)

whereu andp are the velocity components and the pressu
respectively. In principle, there are no restrictions for t
velocity distributionVS and for the shape and motion ofS;
therefore, a variety of boundary conditions can be impos
The main advantage of this approach is thatf can be pre-
scribed on a regular mesh so that the accuracy and efficie
of the solution procedure on simple grids are maintain
The geometrical description of the object is based on a C
representation so that the CFD solver can be directly lin
to the CAD environment without the need for surface tra
lations and modeling.

The main components of the present solver are:
1! accurate and reliable discretization schemes and tu

lence models
2! a computational-geometry algorithm to locate the obj

onto the grid and to transfer information between t
mesh and the object surface~forcing and reconstruction!

3! a mesh-enrichment approach to increase the grid res
tion in the vicinity of the immersed surface

These components will be described in the followi
sections.

3.1 Discretization schemes and turbulence modeling

Most of the nonbody conforming techniques described in
literature are based on the direct solution of Eqs.~2! and,
therefore, simulations performed at relatively low Reyno
number. In these conditions the treatment of the immer
boundary condition is somewhat less critical because the
cous effects are dominant and stabilizing for the numer
procedure. On the other hand, high Reynolds numbers
challenging because the boundary layers tend to be
tremely thin and inaccuracies introduced at the~immersed!
boundary can completely modify the development of
flow. In this review we examine the IB technique develop
in the framework of Large Eddy Simulation~LES! and Rey-
nolds Averaged Navier-Stokes~RANS! approaches.

3.1.1 Large eddy simulation technique
The relevant equations for LES are obtained from
Navier-Stokes Eqs.~2! after the application of a space filte
~filtered variables are denoted with a bar!:

Dū

Dt
5n¹2ū1¹•$n1n t@¹ū1~¹ū!T#%2r21¹ P̄1 f̄, ¹

•ū50 (3)

The difference between~2! and ~3! consists of the secon
term on the right hand side of~3! that is obtained when the
filter is applied to the nonlinear termu•¹u and the Bous-
sinesq hypothesis of stress-strain linear relationship
invoked.
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The eddy viscosityn t is modeled asn t5CD2(2S̄i j S̄i j )
1/2

where S̄i j is the filtered rate of strain tensor, andD is the
filter width ~typically the grid size!.

The value of the model coefficientC in the subgrid scale
turbulent viscosityn t is determined by a dynamic procedu
@32,33# that does not require direct specification of a
model constant. Essentially, this involves filtering at two d
ferent length scales~or filter widths!. The first filtering op-
eration is implicit in the numerical method, and correspon
to a filter width that is equal to the local grid spacing.

The second filter~the test filter! is implemented by aver-
aging over nearest neighbor nodes; this corresponds to a
ter width of twice the local grid spacing. Finally, an avera
over statistically homogeneous directions is needed to de
mine the local value ofC. Provided that grid resolution is
adequate in the vicinity of solid walls, this form of the dy
namic model properly accounts for wall proximity withou
explicit damping functions~eg, the van Driest function in the
case of a Smagorinsky model@34#!.

The prescription of the termf̄ is described in the nex
section.

Details of the numerical method are given in Verzicco a
Orlandi @35# and Orlandi~2000! @36#, the latter also provid-
ing the source code and several advanced tutorials; only
main features are summarized here. Spatial derivative
Eqs. ~3! are discretized in a Cartesian or polar cylindric
coordinate system~depending on the application! using stag-
gered central second order finite difference approximatio
The discretized system is integrated in time using a fractio
step method where the viscous terms are computed implic
and the convective terms explicitly. The large, sparse ma
resulting from the implicit terms is inverted by an approx
mate factorization technique. At each time step the mom
tum equations are provisionally advanced~predictor step! us-
ing the pressure at the previous time step, giving
intermediate non-solenoidal velocity field. Afterward, an
liptic equation ~obtained combining the continuity and th
momentum equations! is solved to enforce the divergence
free condition on the velocity field.

3.1.2 Reynolds averaged Navier-Stokes technique
The RANS equations closely resemble the Eqs.~3! with the
difference that the dependent variables are now time a
aged~and not space averaged!. Within this context, therefore
ū andP̄ denote the mean velocity and pressure, respectiv
From a physical point of view, the main difference is th
turbulence is modeled completely~at all length scales! and
for this reason turbulence models are more complex and
cial for accurate simulations.

In addition to Eqs.~3!, transport equations are solved
model selected turbulent quantities~for example, the turbu-
lent kinetic energy and the turbulence dissipation rate in
standardk-e models@37#! with the objective being to build
the eddy viscosityn t . This is a substantial difference be
tween LES and RANS when used in conjunction with the
approach for an immersed solid object; turbulent quanti
exhibit steep gradients~and usually local maxima! in the
near vicinity of solid boundaries. This imposes strict requi
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ments to the accuracy of the numerical scheme and to
grid resolution in the region near the immersed boundary

One of the simplest~yet accurate! differential turbulence
model is the one equation model due to Spalart and Allma
@38#; the additional transport equation is:

D ñ

Dt
5Gn1

1

sn
¹•$~n1n t!¹ñ%1Cb2~¹ñ!22Yn1 f n (4)

whereGn is the production of turbulent viscosity andYn is
the destruction of turbulent viscosity that occurs in the n
wall region due to wall blocking and viscous damping;sn

andCb2 are model constants andf n is the forcing term. The
eddy viscosity is computed as:

n t5 ñ
x3

x21Cb1
3 (5)

wherex is the ratio betweenñ and the molecular diffusion
and Cb1 , another model constant. The production term
proportional to the vorticity magnitude whereas the destr
tion term contains the dependency onñ and the distance
from the closest wall to provide eddy viscosity damping
the near-wall viscous dominated region. This model has b
developed to capture appropriately boundary layers flo
subjected to adverse pressure gradients; it is the simp
model available to accurately capture separation@38#. It is
useful to point out that the modified eddy viscosityñ varies
linearly in the boundary layer approaching a solid w
~whereas the variation of the eddy viscosity is nonlinear
cording to Eq.~5!!. This property will be useful in conjunc
tion with the treatment of the immersed boundaries. Diff
ently from the SGS model in the LES approach, this mo
requires for each computational grid point the distance fr
the wall to evaluate the damping functions.

The equations are discretized on structured grids usin
collocated finite difference high order upwind scheme. T
code solves the equations in a segregated manner, with
SIMPLE ~Semi-Implicit Method for Pressure-Linked Equ
tions! algorithm used to achieve the pressure-velocity c
pling for stability. In the SIMPLE algorithm, the continuit
equation is converted into a discrete Poisson equation
pressure. The differential equations are linearized and so
implicitly in sequence: starting with the pressure equat
~predictor stage!, followed by the momentum equations an
the pressure correction equation~corrector stage!. The equa-
tions for the scalars~turbulent quantities! are solved after the
updating of both pressure and velocity components. Wit
this loop, the linearized equations for each variable, as t
arise, are treated using an algebraic multigrid solver.

Other turbulence models can be formulated starting fr
transport equations of different quantities; for example,
equations for the turbulent kinetic energyk and the turbu-
lence dissipation ratee lead to the well-knownk-e approach.
In general, any turbulence model can be used in the fra
work of a RANS/IB solver@39# but the particular behavior o
the unknown quantities in the close vicinity of solid wa
will influence the quality and accuracy of the predictions
relation to the immersed boundary treatment~see Section
3.2.4!.
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3.2 Definition of the forcing term

The accuracy of the IB approach depends on the speci
tion of the forcing term in the governing equations. In th
section, different approaches are analyzed. In addition,
problem of defining the forcing in the neighboring of th
immersed surface and eventually inside the object
discussed.

3.2.1 Feedback forcing
Supposing that the immersed surfaceScoincides locally with
the grid node (i , j ,k) and a Dirichlet boundary condition
possibly time dependent,f(t)5fS(t) has to be applied~f is
either one of the velocity components or the eddy viscos
in the RANS model!. The forcing termf, according to Gold-
stein, Handler and Sirovich@12# and Saiki and Biringen@13#,
is:

f i jk~ t !5a fE
0

t

@f i jk~ t8!2fS~ t8!#dt81b f@f i jk~ t !2fS~ t !#

(6)

a f and b f are negativeconstants~whose dimensions are
respectively, 1/T2 and 1/T, T being the time!. The above
quantity is a feedback to the differencef i jk2fS that asymp-
totically enforcesf i jk5fS on the immersed boundary. I
fact, the first term of Eq.~6! will decrease in time~become
more negative! as the integrand increases, thus tending
annihilate any difference betweenf i jk andfS . The second
term, on the other hand, can be interpreted as the resist
opposed by the surface element to assume a boundary v
different fromfS .

An intuitive argument for understanding the action of t
above forcing is the following. Consider the forcing applie
to the velocity components in Eqs.~2! to impose the condi-
tion u(t)5VS on the surface; if we retain only the first term
on the left hand side and the last term on the right hand s
in the Navier-Stokes Eq.~2!:

dq

dt
'f5a fE

0

t

qdt81b fq (7)

with q5u2VS . Equation~7! represents a simple dampe
oscillator. This implies that asu on the boundary become
different from VS the forcing f brings u back toVS . In an
unsteady flow, the magnitude ofa f must be large enough s
that the restoring force can react with a frequency which
bigger than any frequency in the flow. Unfortunately, t
value of the constants is flow dependent and, even if, w
a f andb f are big enough, the flow becomes independen
their value, there is not a general rule for their determinati
The major drawback of this forcing, however, is that b
values ofa f andb f make Eqs.~2! stiff and its time integra-
tion requires very small time steps. Goldstein, Handler a
Sirovich @12# performed the stability analysis and they foun
that, when all the forcing terms are computed explicitly,
one or two orders of magnitude decrease in the time step
was required to ensure stability. This is clearly unaccepta
for large scale calculations of turbulent flows.

A partial improvement to the stability limit can be ob
tained by treating the second term in the forcing term of E
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~7! implicitly @17#; this modification only alleviates the se
vere time step limitation of a fully explicit treatment of th
forcing.

It should be stressed that the stability of the calculat
~and, therefore, the time step size! depends not only on the
values ofa f andb f but also on the flow, ie, on the details o
the geometry to be mimicked. We have observed, for
ample, that the presence of sharp corners prevents the a
tion of small values~in magnitude! of a f and b f . On the
other hand, for smooth geometries, small values of the c
stants can be used and simulations up toCFL50.5 can be
run. It is also possible to relax the values ofa f andb f during
thequietphases of the flow evolution, but there is no uniq
criterion for this andad hocjudgments are needed.

3.2.2 Penalty methods
In the family of the penalty methods, the forcing termf i jk

assumes the form

f i jk5
~f i jk2fS!

b
(8)

where the parameterb is a function both of spatial positionx
and timet. Equation~8! is a particular case of the feedbac
forcing but it can be interpreted in a different way. If w
consider the Navier-Stokes Eqs.~2! and we introduce the
Darcy number (Da5K0 /L2 with K0 a reference permeabil
ity and L a reference length!, the above forcing can be re
written for the velocity as

f i jk5
n~ui jk2VS!

rDaK
(9)

K being the new free parameter. IfK→`, the forcing van-
ishes and Eqs.~2! recover the standard Navier-Stokes.
contrast, ifK→0, the forcing becomes dominant in the equ
tion yielding the solutionui jk5VS .

For 0,K,`, the forcing can be modulated to provide
momentum loss in a desired region, thus simulating por
media. In this case, Eqs.~2! become the Navier-Stokes
Brinkman equations that can be solved over the whole
main with different values ofK depending on the zonal cha
acterization~fluid, solid, or porous medium!.

A drawback of the method is that in computer simulatio
the value ofK can be neither 0 nor̀ , therefore solid and
fluid regions are approximated by finite, user-defined valu
they tend to be dependent on the problem and Reyn
number and must be tuned for each simulation. The m
problem is related to the use of very small values ofK that
increase the stiffness of the governing equations and, th
fore, the convergence properties of the solution proced
The final values ofK must therefore be a compromise b
tween the need of approximating solid boundaries and
preservation of the numerical stability at a reasonable c
putational cost.

3.2.3 Direct forcing
This approach consists of an imposition of the veloc
boundary conditions on the immersed surface without in
ducing or computing any forcing term. Nevertheless, in or
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to make the notation consistent with the previous section
will treat the direct forcing in the context of an extra force
the Navier-Stokes equations.

Mohd-Yusof @16# first proposed to consider the proble
of forcing directly in the context of the discretized equati
to drive the numerical solution towards the required bou
ary values. In his approach, the forcing can be explic
defined so that appropriate boundary values are specifie
the immersed surface. In other words, iff i jk

n is the approxi-
mation of the solution of the governing equation, the discr
Navier-Stokes equation can be written as:

f i jk
n112f i jk

n

Dt
5RHS1 f i jk (10)

whereDt is the time step andRHSrepresents the discretize
form of the convective, diffusive, and source terms in t
LES or RANS equations. Supposing, as before, that the
mersed surface coincides with the node (i , j ,k) and a Dirich-
let boundary condition (f5fS) has to be applied, the forc
ing term f can be directly obtained by:

f i jk5
fs2f i jk

n

Dt
2RHS (11)

beingf eitheru or ñ.
Once more, it is worth noting that the combination of Eq

~10! and ~11! yields f i jk
n115fS which corresponds to a

boundary condition within the flow; this implies that~in
practice! in a calculation, the forcing term~11! is never com-
puted. The main advantage in this case is that no additio
terms are introduced in the equations, thus avoiding stiffn
problems as in the previous approaches.

3.2.4 Boundary reconstruction
The expressions previously given for the forcing are f
mally derived in the case that the position of the unknow
on the grid coincides with the immersed boundary; t
would require the boundary to lay on coordinate lines
surfaces which is not the case for complex curvilinear geo
etries. In particular, in the case of a staggered solution a
rithm, even if the boundary were coincident with the positi
of one unknown, this would not be so for the others; the
fore, an interpolation procedure would be needed anywa

As for the choice of the forcing scheme, many differe
techniques have been adopted to overcome this difficulty.
can classify the available techniques in two groups:!
schemes that spread the forcing function in the vicinity of
immersed surface and b! schemes that produce a local reco
struction of the solution based on the target boundary valu

Peskin@6# proposed the first approach by substituting
discrete Dirac d function in ~1! as discussed before. Th
main drawback of this approach is that this spreading act
an extra dissipation in the close vicinity of the immers
boundary; this can lead to inaccurate predictions of
boundary layer development.

On the other hand, local reconstructions of the solution
the vicinity of the immersed boundary can be built with hig
degree of accuracy. Initial work by@18# was based on a
simple linear, 1D operator~Fig. 1a! and this approach prove
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to be accurate for boundaries largely aligned with grid lin
On each grid segment intersecting the immersed surfac
linear velocity reconstruction is obtained using theinterior
value ~point 2 in Fig. 1a and the wall value point 0!; the
value close to the interface inside the body~point 1! can
therefore be reconstructed. In the general case of cu
boundaries on Cartesian grids a more sophisticated re
struction scheme must be used. In Figs. 1b and 1c linear and
quadratic 2D stencils are shown. In the linear case, twoin-
terior values~2 and 3! are used together with the wall valu
~0! to evaluate the solution close to the interface~1!. Note
that the triangles in Fig. 1b are built such that two vertice
always lay in the fluid part. By increasing the support for t
interpolation stencil higher order reconstructions can be
tained. We point out that in this case the wordinterior al-
ways refers to the fluid side, therefore in the node 1
velocity is reversed in order to prevent the flow from pe
etrating and slipping on the immersed boundary. The ab
linear reconstruction has been implemented in@17# in a
slightly different way, with the node 1 being the first interi
and 2 the second interior; only minor differences were fou
with respect to the above described procedure, even if
latter is preferable since reconstructed quantities are no
signed inside the flow domain.

It is worthwhile to notice that this approach can be co
sidered as a generalization of theghost cellapproach@39#,
where the boundary conditions are imposed by fixing s
able values of the solution outside the computational dom
~ghost cells!.

The stencils reported earlier are suitable to reconst
variables that are smoothly varying without exhibiting lar
maxima; it is well known that high order polynomial inte
polations are keen to introduce wiggles and spurious
trema. For this reason, more elaborate schemes may be
the inverse distance weighted method proposed by@40# has
the property of preserving local maxima and produc
smooth reconstruction. The interpolation at a certain loca
(x,y,z) is:

f~x,y,z!5 (
m51

n

wmfm /q (12)
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wm5S R2hm

Rhm
D p

(13)

q5(
l 51

n S R2hl

Rhl
D p

(14)

wherefm represents the solution at a certain location,wm

represents the weight, andhm the distance between the loca
tion (x,y,z) and the location offm ; R represents the maxi
mum hm .

The method of inverse distance has been success
used also for the velocity reconstruction at the immers
boundary by Tessiciniet al @41# for the axisymmetric and 3D
simple and coaxial jets forming from a curvilinear nozzle

3.2.5 Internal treatment of the body
A few words should be said about the internal treatment
the bodies since the forcings described in Sections 3.2
3.2.3 are only valid at the boundary. For the internal tre
ment of the body, there are several possibilities, even i
our simulations we have found that the external flow is
sentially independent of the internal conditions.

A first possibility is to apply the forcing inside the bod
without any smoothing. This is equivalent to imposing t
velocity distribution inside the body with the pressure th
adjusts accordingly.

An alternative approach consists of leaving the interior
the body free to develop a flow without imposing anythin
Of course, in this case the flow pattern inside the body w
be different from the previous case, but the external flow
unchanged.

The last possibility we have investigated is to reverse
velocity at the first point inside the body in such a way th
it still results in u5V on the boundary. Again, only the in
ternal flow pattern is different. Note that this internal trea
ment was required by@16# in spectral simulations to alleviat
the problem of spurious oscillations near the boundary;
procedure was used also by Goldstein, Handler and Siro
@12# for their simulations.

Extensive testing of these procedures has been perfor
Fig. 1 Reconstruction stencils in the vicinity of the immersed boundary:a! Linear one-dimensional scheme,b! linear multi-dimensional
scheme, andc! quadratic multi-dimensional scheme
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on the accuracy and the efficiency of the scheme. We h
found that, when using the direct forcing of Section 3.2
there is essentially no influence. Therefore, depending on
particular flow, the easiest treatment can be used. On
other hand, the feedback forcing of Section 3.2.1 requi
smaller values ofa f and b f ~in absolute value! when the
velocity distribution inside the body was prescribed. A
though this did not affect the external flow, lower values
a f andb f allowed the use of bigger time steps, thus impro
ing the efficiency.

It is useful to point out that the solution in the interior
the domain is discarded and does not influence the phys
solution outside; in other words, calculations performed
the inside are an unnecessary overhead. On the other h
for specific applications~like the study of the conjugate
solid/fluid heat transfer!, the ability to compute a solution
inside the solid might be an additional advantage of
present technique.

3.3 Description of the boundary immersion

The immersed objects can be described using CAD pri
tives directly, thus eliminating completely the need for CA
CFD translations. The widely used Stereo-LiThograp
~STL! format is herein employed; the STL representation
a surface is a collection of unconnected triangles of si
inversely proportional to the local curvature of the origin
surface. This format is already the standard for theRapid
Prototypingcommunity and all the CAD systems have t
ability to export a given surface in STL format automatical
This allows the treatment of any complex geometry witho
the need to generate a surface mesh; theonly requirement for
the object description is that the given surface must b
closed manifold. This is the same restriction enforced
rapid prototyping tools and guarantees that the final obje
can be produced.

The geometrical preprocessor uses the CAD surface
scription and the underlying grid to generate all the inter
lation data required by the IB Flow Solver. The geometri
module performs the separation~tagging! of the computa-
tional cells in dead ~inside the body!, alive ~outside the
body!, and interface ~partially inside!. This procedure is
based on a simple Ray Tracing~RT! technique normally used
in computer graphics. A random ray which originates fro
the location to be checked~grid nodes! is considered and the
stri-
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intersections between this ray and the given surface
counted; if the total number is even~odd! the point is outside
~inside! the object. The intersection between a ray~a 3D
segment! and the surface~a collection of polygons! is carried
out using the geometrical algorithms reported in O’Rour
@42#. The RANS flow solver requires only information at th
nodes whereas the LES solver, due to the staggering of
variables, requires the same tagging performed at the face
each control volumes; this is performed by analyzing
nodes belonging to each face. If all the nodes are dead~alive!
the face is tagged as dead~alive!; otherwise, it is considered
as an interface.

The RT may fail due to incorrect surface representat
~overlapping or missing triangles in the STL file!; to over-
come this difficulty, before tagging any location three p
pendicular rays are cast~on a structured grid there are s
edges from every node!: if the corresponding result~odd or
even intersections! is the same, the point is tagged, othe
wise, up to 20 additional random rays are traced, and
most probable result is accepted. Thishealingprocess can be
also approached in a different way by testing the STL file
inconsistency and by regenerating the surface triangula
@43#. After completing the tagging, some additional ge
metrical quantities are evaluated to perform the interpolat
explained in the previous section.

Two example of the application of this geometrical ta
ging are reported. The first one represents a shark and
shown in Fig. 2; the model is made up of 40,000 triang
and the solution on a coarse mesh is shown in terms of
stream traces. The second example shows a very rea
sports car~Fig. 3!; this model is made up of more than half
million surface triangles, with all the details of the origin
geometry preserved; in this case, the computed pressure
tribution on the surface is reported.

The total cost of the tagging and generation of the int

f theFig. 3 STL model of a Porsche 911 and computed pressure di
bution on the surface at Reynolds number of 100,000
Fig. 2 STL model of a hammer-head shark and streamtraces o
computed flow field at Reynolds number of 1,000
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polation data requires less than 20 seconds for the first
ample and about nine minutes for the second one by usin
underlying grid of about one million grid points on a SG
R12K workstation.

It is useful to point out that the STL surface triangulati
is not well suited as surface mesh for unstructured body
ted volume grid generation; this is due to the presence
highly skewed triangles in regions of low surface curvatu

3.4 Grid refinement technique

Cartesian methods are extremely effective in captur
smoothly varying solutions, but have difficulties in dealin
with steep gradients because of the overhead associated
local resolution: even if fine grids are only required in
limited region, grid lines must be extended to the bound
of the domain. In the context of the IB techniques, ve
refined grids are often required close to high curvature
mersed surfaces to properly represent the details of the
ometry.

Grid resolution can be easily increased in the framew
of unstructured meshes by locally inserting grid points a
regenerating the connectivity between the points; the s
procedure for Cartesian grids is not straightforward as it w
destroy the implicit ordering of the mesh points. Many a
proaches for local grid refinement of Cartesian meshes h
been proposed; the most successful is based on the wor
Powell and De Zeeuw@44# and Pemberet al @45#. It is based
on the idea ofoctreedata structure in which every comput
tional cell can be subdivided in four~eight in three dimen-
sions! children-cells. The main difficulty associated with th
technique is the inherent complexity of the solution alg
rithm, which is reflected in high computational costs a
memory requirements.

On the other hand, for Cartesian grids, mesh coordin
directions can be identified and used to number the cells
nodes. Thus, in two dimensions a cell is identified by its t
indicesi and j in the mesh coordinate system, and its neig
bors are located by incrementing one of these indices.
unstructured meshes this is no longer possible, since, in p
ciple, the cells and nodes are not ordered. The use of uns
tured meshes requires the storage of connectivity informa
along with the use of an indirect addressing system.

If we consider the discretization of an elliptic operat
~for example, the diffusion terms in the 2D Navier-Stok
Eqs. ~2!!, we can write a central second order finite diffe
ence discretization on a Cartesian grid as:

]2f

]x2 1
]2f

]y2 5
1

Dx Ff i 11,j2f i , j

Dx
2

f i , j2f i 21,j

Dx G
1

1

Dy Ff i , j 112f i , j

Dy
2

f i , j2f i , j 21

Dy G (15)

whereDx andDy are the mesh spacing in the two direction
Dx andDy can depend, respectively, onx andy and in this
case the mesh is nonuniform. This discretization is obviou
limited to regular brick shaped physical domains. A mo
general representation can be obtained using curvilin
grids, where three sets of coordinate lines intersect in e
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point of the computational domain@46#. In this case the grid
point locations must be explicitly defined~as the distance
between two neighboring points is not constant! but the grid
connectivity is still implicit in the initial ordering~the grid is
saidstructured!. Using unstructured grids, the computation
domain is discretized by a disordered cloud of points a
then the differential operator cannot be approximated
simple formulas as before. Polynomial or least square rec
structions in the neighbors of each vertex are built to eva
ate the differential operators.

If we go back to the Eq.~15!, we can generalize it to dea
with local grid refinement. The idea is to introduce a certa
degree of explicit connectivity but force any grid vertex
have two neighbors on each grid line. The differential ope
tor can be discretized as:

]2f

]x2 1
]2f

]y2 5
1

Dxi j
Ff i

i j
1 , j2f i , j

Dxi j
1 2

f i , j2f i
i j
2 , j

Dxi j
2 G

1
1

Dyi j
Ff i , j

i j
12f i , j

Dyi j
1 2

f i , j2f i , j
i j
2

Dyi j
2 G (16)

where i i j
2 , i i j

1 , j i j
2 , and j i j

1 are the only connectivity infor-
mation required at each location (i , j ). Dxi j

2 , Dxi j
1 , Dyi j

2 ,
andDyi j

1 are the corresponding grid spacings andDxi j , Dyi j

their averages, respectively.
This approach is based on the observation that in a C

tesian mesh the locally refined grid can be viewed as a fi
globally refined mesh with some grid lines partially delete
In Fig. 4 the central region of the grid is refined but the gr
lines are extended to the boundary of the computational
main; in this way, a (i , j ) ordering of the vertices~unknowns!
can be retained. In order to exploit the savings occurr
with the local refinement strategy, unknowns located outs
the central zone on the dashed lines are not considered in
problem. The discretization formula~16! can be used to link
active grid points across the dashed lines, for example at
location (i 21,j 21) where the point (i 21,j 11) will be
used instead of (i 21,j ). This procedure can be repeated f
all the locations reported in Fig. 4, but not for the point (i , j )
which is missing the left neighboring point. This location
called ~in the unstructured context! a hangingnode and the
local solution is obtained via interpolation~reconstruction!
from surroundings points. A detailed discussion of the imp
mentation and accuracy issues related to the local grid refi
ment is outside the scope of the present review but it
reported in@47#.

Fig. 4 Cartesian mesh with local mesh refinement: dashed li
represent grid lines that are partially deleted
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As discussed in the previous section, the correct repre
tation of curved immersed boundaries requires fine unde
ing grids; an automatic grid enrichment technique has b
developed using the geometrical tagging introduced in
previous section and the ability to treat hanging nodes
Fig. 5, a curved boundary~representing the letter F! is im-
mersed on an underlying uniform grid~Fig. 5a!. The tagging
functionT is shown for the initial coarse mesh; the dark ar
corresponds to internal cells (T521) whereas the white
area corresponds to fluid cells (T51). The inverse of the
numerical gradient of this function is also reported: its va
is proportional to the local grid size. By successively halvi
the cells until this gradient exceeds a prescribed value,
grid and the corresponding sharper geometrical represe
tion in Fig. 5d is obtained. Note that the values of the gra
ent are increasing~the inverse is reported! from left to right
in Fig. 5 because of the decreasing grid size. As an exam
in Fig. 6, a calculation is carried out around the letters F
using a grid adapted with the same procedure.

4 EXAMPLES

The IB approach in conjunction with the LES or the RAN
simulation code has been applied to several problems; in
following, five test cases are reported. The first two repres
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fairly classical problems and the objective is to demonstr
the accuracy of the present technique as compared to s
dard body fitted approaches. The third and fourth proble
illustrate the ability of the IB technique to handle problem
with moving boundaries; more in detail, the third examp
has a truly moving boundary while the fourth as an impel
rotating at a constant angular velocity which, therefore,
fixed in the rotating frame of reference. The last one is
industrial-like problem and shows that the IB approach c
be used as a design tool to evaluate the effect of differ
geometrical configurations without the need to regene
computational grids.

4.1 Flow around a cylinder

The flow around a circular cylinder has been extensiv
studied both numerically and experimentally for several
cades. This flow, in fact, from one hand, is sufficien
simple to be analyzed in great detail while, on the oth
hand, still retains the physics of more complex flows. T
flow regime is strongly dependent on the Reynolds numb
Re ~based on the diameter!: it develops a steady symmetri
recirculation for Re<40. while it sheds counter rotating 2D
laminar vortices up to Re5190. From 190<Re<260 the
shedding becomes 3D with span-wise perturbations of f
cylinder diameter wavelength while for higher Reynolds v
ues the perturbations develop on a finer scale, around
cylinder diameter. Given the low Reynolds values, all t
described regimes are amenable to direct numerical sim
tion and they have been studied by many researchers~see the
review by Williamson@48# and references therein!. This flow
is also an interesting benchmark for the immersed bound
methods since the flow dynamics is governed by the sep
tion of the boundary layer from the cylinder surface. Th
implies that inaccurate treatments of the~immersed! body
surface would result in unphysical perturbations on the la
and, therefore, in altered dynamics. The direct numer
simulation of this flow up to Re5300 with an immersed
boundary method has been carried out by Orlandiet al @49#
Fig. 5 Example of the automatic grid refinement strategy for i
mersed boundaries: Computational grids~top!, heavyside tagging
function ~middle!, and numerical derivative of the tagging functio
~bottom!; a to d represent successive levels of refinement
of

l-
-

n

m-

Fig. 7 Mean streamwise velocity on the center line of the wake
a circular cylinder at Re53900: h experimental results by
Lourenco and Shih@50#, L experimental results by Ong and Wa
lace @51#, dns on a 4931293193 grid, les with a dy-
namic SGS model on a 4931293193 grid
Fig. 6 Flow simulation around the FPC letters at Reynolds nu
ber 10,000



tro-
de-
u-

rid
in

was
re-

so-
s.

is-
tric
he
ity

ex

ed
akly
rdi
ll
the

,000
the
x-

u-
e.
p-
nd

f

2
.
y

of

Appl Mech Rev vol 56, no 3, May 2003 Iaccarino and Verzicco: Immersed boundary technique 341
confirming the above described findings and showing the
capability of the method to capture the viscous boundary
layer separation.

When the Reynolds number is increased up to 1200~even
if in the literature scattered values in between 300 and 1200
are reported@50#! the shear layers separating from the cylin-
der become unstable and the shed vortices contain fine scale
structures. As a consequence, the cylinder wake experiences
a dynamics different from that at lower Reynolds as experi-
mentally shown in@51# and @52# at Re53900. At this Rey-
nolds number, direct numerical simulation, although afford-
able by modern supercomputers, has never been attempted,
while large eddy simulation has been successfully employed.
Kravchenko and Moin@53# have used B-splines on body
fitted meshes obtaining a good agreement with experiments.
These results were fully confirmed by Breuer@54# which also
addressed the effect of the span-wise domain dimension.

The simulation of this flow by an immersed boundary
approach poses a two-fold challenge, since the boundary
layer developing at the cylinder surface is very thin and this
must be captured with a non-body-fitted grid. In addition, the
flow separation strongly depends on the wall dynamics
which, in turn, requires the appropriate behavior of the sub-
grid scale model at the wall. The results of Figs. 7 and 8 have
been obtained by Tessicini@55# by a second order central
finite difference code on a Cartesian mesh with a dynamic
sub-grid scale model. The grid had 4931293193 points, re-
spectively, in the span-wise, cross-stream, and stream-wise
directions and the computational domain waspD, 30D,
30D in the same directions,D being the cylinder diameter;
the mesh was uniform in the span-wise and nonuniform in
the other directions in such a way as to cluster the nodes
around the cylinder and downstream in the wake. These re-
sults show a satisfactory agreement with experiments and
numerical simulations available from the literature and, simi-
larly to Breuer’s@54# findings, the flow in the region around
the cylinder has little sensitivity to the turbulence model
while it has a positive effect for the downstream wake evo-
lution ~Fig. 7!.

One interesting feature of these results is the discrepancy
of the LES simulation with respect to the simulation without
sub-grid scale model and the results by@53# in the region
y/d52 ~Fig. 8!. This was found to be due to the uneven
distribution of the grid points owing to an enlargement of the
computational domain obtained bypatchingan extra strip to
an old computational domain. In that region, therefore, the

metric of the mesh was not smooth enough and this in
duced numerical errors when computing finite difference
rivatives. This problem was more severe for the LES sim
lation than for DNS since in the former case the sub-g
scale model requires the computation of the strain field
order to parameterize the turbulent stresses. This finding
unexpected since inaccuracies in a dynamically passive
gion were supposed to have negligible influence on the
lution and, if any, certainly not on the mean flow statistic

We wish to stress that, although accidental, the above m
take was instructive since, while it is clear that a symme
grid must be used for the flow around a circular cylinder, t
choice is not obvious for an arbitrary object; the sensitiv
of the LES solutions to thegrid quality is therefore an im-
portant factor to be accounted for in the LES of compl
flows.

4.2 Flow in a wavy channel

The flow in a wavy channel~Fig. 9! is characterized by in-
creased turbulence levels close to the wall with improv
heat and mass transfer performance. Laminar and we
turbulent flows have been analyzed using DNS by Leona
and Orlandi@56# in order to investigate the physics of wa
turbulence in the presence of surface roughness. In
present case, the Reynolds number is in the range of 10
to 100,000, therefore still relatively low, but nevertheless
problem is challenging for turbulence modeling. Kuzan’s e
perimental measurements@57# are used to evaluate the acc
racy of RANS simulations performed using the IB techniqu
Additional simulations performed using the body fitted a
proach ~with the original code developed by Rogers a
Kwak @58#! are also presented.

Fig. 8 Mean ~left! and rms
~right! cross-stream profiles o
streamwise velocity in the wake
of the cylinder. Sections are
sampled at 1.06, 1.54, and 2.0
cylinder diameters downstream
The symbols are the results b
Kravchenko and Moin @52#,

dns on a 4931293193 grid,
les with a dynamic SGS

model on a 4931293193 grid.

Fig. 9 Sketch of the wavy channel problem with the location
the measured velocity profiles
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The wavy bottom wall has a sinusoidal shape whose
plitude and wave length are 0.1 m and 1.0 m, respectiv
Since the flow is periodic, the computational domain can
chosen to cover only one period of the wavy channel. T
length of the periodic domain is 1 m. Experimental data
available in two sections corresponding to the valley and
peak in Fig. 9. The Reynolds number~based on mean chan
nel height and the mass flow! is about 8000.

The computational grids are reported in Fig. 10. The fi
one~Fig. 10a! is a body fitted mesh made up of 100380 grid
points with strong clustering at the channel walls. The s
ond is a Cartesian mesh~100360! underlying the sinusoida
r-
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bottom wall~Fig. 10b!, whereas the third is locally refined i
the region close to the immersed bottom wall~Fig. 10c!.

The solution is reported in Fig. 11 in terms of the strea
wise velocity component; a large recirculation region
present downstream of the wavy peak~dashed lines!; this is
captured by the body fitted and the locally refined grid in
very similar way, while somewhat underpredicted by the u
form Cartesian mesh. This is confirmed by the analysis of
velocity profiles reported in Fig. 12. Very good agreeme
between the experiments and the calculations performed
the body fitted and the locally refined grid is observed;
calculation on the uniform Cartesian mesh captures
qualitative behavior of the flow but fails to capture the co
rect amount of separation. This clearly indicates the need
a very highly refined grid close to curved immersed boun
aries to correctly represent sharp flow gradients.

4.3 Flow in a pistonÕcylinder assembly

The flow in an axisymmetric piston/cylinder assembly with
fixed valve has been simulated using both the LES and
RANS solver.

The configuration is reported in Fig. 13 and experimen
measurements~phase averaged mean and RMS radial p
files of axial velocity! are available@59# for the validation of
the numerical results. In the experiment, the piston was
ternally driven so that the fluid flowed into the cylinder fro
outside during the downward piston motion and vice ve
when the piston moved up. Since the valve was fixed an
tiny annular gap was left open between the valve and
cylinder head, the compression phase is not included in
flow dynamics~the working fluid is still assumed to be in
compressible!. The piston was driven by a simple harmon
motion at a speed of 200 rpm.21 rad/s which for the presen
geometry yields a mean piston speed ofV̄p50.4 m/s~when
averaged over a half cycle!. The Reynolds number of the
flow based onV̄p and on the piston radius is Re52000 in air.

In Verzicco et al @18#, all the details of the computation
and the boundary conditions are given. In this paper we o
mention that at the lower surface a prescribed mass flow
assigned with a constant axial velocity profile in such a w
as to preserve the free divergence in the region between

a-
Fig. 10 Computational grids for the wavy channel RANS simu
tions: a! body fitted grid,b! Cartesian mesh, andc! locally refined
Cartesian mesh

Fig. 11 Streamwise velocity component at Re58000~dashed line
represent negative values!: a! body fitted grid,b! Cartesian mesh,
andc! locally refined Cartesian mesh
d

Fig. 12 Streamwise velocity
component profiles compare
with the experimental data
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lower boundary and the piston. At the upper boundary, c
vective boundary conditions are used as extensively
plained in@18#.

In Fig. 13, snapshots during one instant of the oscillat
cycle are given and the high three-dimensionality of the fl
can be appreciated from the vector plots in orthogonal s
tions. Radial profiles of axial velocity were obtained b
phase averaging the fields over four cycles and then aver
in the azimuthal direction. Three profiles at different ax
locations are shown in Fig. 14. The comparison with
experimental data shows that the LES results are alway
better agreement than the RANS, but overall both soluti
represent the flow appropriately. In Verziccoet al @18#, LES
velocity profiles in additional sections and RMS profiles
axial velocity are also reported consistently showing a v
good agreement with the measurements. In Haworth@60#,
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the present LES results are also compared to simulat
obtained using an unstructured boundary fitted, deforma
mesh; the quality of the results is comparable even tho
the immersed boundary technique is much less expensiv

4.4 Flow in a stirred tank

The LES and RANS solvers have been used to investig
the flow in a cylindrical unbaffled tank stirred by an impell
located at mid-height of the tank, rotating at constant vel
ity V @61#. The impeller has eight blades equispaced o
the whole azimuthal span; a sketch of the device is giv
in Fig. 15.

A computational grid made up of 1923102397 nodes~in
the vertical, radial and azimuthal direction respectively! has
been used. The grid is uniform in the azimuthal direction a
a section of it is reported in Fig. 15. The Navier-Stokes E
~2! are solved in a frame of reference fixed with the impel
and therefore rotating with constant angular velocityV. The
extra termsf are prescribed at each time step to establish
desired velocityVb50 ~in the rotating frame! on the impel-
ler and shaft surfaces. On the external cylindrical wall of t
tank, a constant azimuthal velocity is imposedVu(R)
52VR ~whereR is the radius of the tank!, while the bottom
horizontal no-slip surface moves according toVu(r )52Vr
with r the radial coordinate. A slip boundary condition
imposed on the upper boundary of the computational
main. The Reynolds number based on the rotational sp
and the blade radius (Rb) is Re51636.

Indeed, we have verified that the moderate value of
Reynolds number and the fine grid used were such that
sub-grid scale turbulence model was essentially inactive
LES and DNS results were indistinguishable. The results
presented in Fig. 16 in terms of azimuthally averaged vel
ity vectors, instantaneous velocity magnitude and turbul
kinetic energy. The meridional plane is roughly divided in
two halves by the radial jet emanating from the impeller. T
two recirculation regions are not symmetric owing to t
different boundary conditions on the upper and lower ho
zontal surfaces. The flow is strongly unsteady~as evident
from Fig. 16b!; in the meridional recirculation, it is essen
tially dominated by the rotation period of the impeller, whi
the flow in the jet has a wide frequency content, rang
from the slow vertical flapping up to the fast vortex sheddi
from the impeller blade tips@62#. In addition, the flow is
strongly inhomogeneous in space with quiet and laminar-
recirculation far from the impeller and a turbulent jet regi
at the center of the tank~Fig. 16c!.

Quantitative comparisons between the present simulat
and experimental data is reported in Fig. 17 in terms of rad
profiles of azimuthal, radial, and vertical velocity comp
nents. The present results are in very good agreement
the measurements; in particular, the peaks of the azimu
and radial velocity close to the impeller are very well ca
tured. RANS predictions show large discrepancies, es
cially in terms of the radial velocity, which is strongly ove
estimated. This is mainly due to the presence of large s
unsteadiness and inhomogeneous turbulence.

rs
er-

es

s is
Fig. 13 Contour plots of azimuthal vorticity and velocity vecto
projected onto 2D cutting planes for a 3D case with azimuthal p
turbation at Re52,000, 653653151 (u3r 3z) grid, dynamic Sma-
gorinsky subgrid-scale turbulence model. Vorticity scale solid lin
~ ! indicate positive values, dotted lines~• • • •! indicate nega-
tive values, and the increment between adjacent isocontour
Dv562.5V̄p /b: a! t5p/2, azimuthal vorticity;b! t5p/2, pro-
jected velocity vectors, meridional plane;c! t5p/2, projected ve-
locity vectors, 15 mm below the head;d! t5p, azimuthal vorticity;
e! t5p, projected velocity vectors, meridional plane; andf! t
5p, projected velocity vectors, 15 mm below the head.
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Fig. 14 Radial profiles of averaged axial velocity components at different locations in the cylinder. Symbols: Experiments@58#, Solid
Line: LES simulation; Dashed line: RANS simulations
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4.5 Flow around road vehicles

The LES solver with the IB approach has been used to si
late the flow around a square back road vehicle with d
reduction appendices attached to its base. The objective
study the unsteady dynamics of the wake and the modifi
tions induced by the drag reduction devices; experime
data are available for comparison@63#.

The baseline configuration is reported in Fig. 18; t
n
rs:
u-
ag
is to
ca-
tal

he

simulations are performed on a Cartesian grid made up
22031403257 points in the stream-wise, vertical, and spa
wise directions, respectively.

The experimental Reynolds number based on the f

al
Fig. 16 Contour plots of azimuthally averaged velocity vecto
a!, instantaneous velocity magnitude,b! and turbulent kinetic en-
ergy,c! in a meridional plane crossing a blade
Fig. 15 Tank configuration and computational grid in a meridio
plane~only one every six grid-points are shown!
Fig. 17 Radial profiles of averaged velocity components in the middle of the tank. Symbols: Experiments@60#, Solid line: Present LES;
Dashed line: RANS simulations@61#
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Fig. 18 Road-vehicle configuration and computational grid in
symmetry plane~only one every four grid-points are shown!
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Fig. 20 Flow patterns in the symmetry plane superimposed to c
tours of time-averaged streamwise velocity: Re520,000a! Baseline
square-back geometry,b! Square-back with base plates,c! Boat-tail
base
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stream velocity and the model height~H! is Re5170,000.
Preliminary simulations were carried out assuming that
main features of the flow and the corresponding trends in
flow dynamics at the back of the body were independen
Reynolds number if this was sufficiently high. According
the Reynolds number of the numerical simulations was fi
at Re520,000; it was observed that, indeed, the numer
simulations showed all the trends and the flow features
served in the experiments. However, some quantitative
ferences were present. For this reason, additional simulat
have been performed at Re5100,000 showing a much bette
quantitative agreement with the experimental data. Quan
tive results are reported in Fig. 19 in terms of time averag
stream-wise velocity profiles in two sections downstream
the base for the square back configurations. The meas
ments are compared with two LES simulations performed
Re520,000 and Re5100,000; the high Reynolds numbe
simulations agree very well with the experiments. The def
velocity as well as the length of the recirculation region a
accurately captured. The low Reynolds number simulati
agree qualitatively with the measurements but strongly ov
predict the thickness of the bottom wall boundary layer.

The LES flow solver in combination with the IB tech
nique was then used to study the influence of modification
the geometry of the back of the vehicle on the wake dyna
ics and overall drag coefficients. The use of a the Carte
mesh reported in Fig. 18 allows to perform the simulatio
very efficiently without the need to regenerate a compu
tional grid for every configuration.

Qualitative results are reported in Fig. 20 for the thr
configurations analyzed and for the lower Reynolds num
e
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The flow patterns in the near wake recirculation region
very different; the results for the baseline square back c
figuration show a strong interaction between the base re
culation and the boundary layer on the bottom wall. A mo
top to bottom symmetric wake is obtained with the other t
configurations; for these two the base pressure is higher
for the square back and, therefore, the drag is lower.

The high Reynolds number results have also been c
pared to the experiments in terms of drag co-efficients
value of 0.291 for the square back and 0.223 for the boat
were computed from the LES simulations, whereas 0.3
0.23 were the corresponding measurements. Additio
analyses were carried out to study the unsteady dynamic
the flow ~for the three configurations!; the wake of the base
line geometry is characterized by a low frequency strea
wisepumping, a strong vertical flapping, and high frequen
vortex pairing in the shear layers detaching from the bo
The low frequency modes are strongly suppressed by
drag reduction devices; the same behavior was observe
the experiments. Additional comparison and detailed disc
sion of the results are reported in Verziccoet al @64#.

5 CONCLUSIONS

In this review, we have reported some recent results on
application of the Immersed Boundary Method to LES a
RANS turbulent flow simulations. The Immersed Bounda
approach allows the use of simple and efficient numer
techniques on regular grids for simulations of fluid flo
around complex configurations; the complexity of the geo
etry is accounted for only in the governing equations us
additional terms. Details of the forcing definition and th
treatment of the immersed surfaces have been discussed
two techniques for predicting turbulent flows have be
used, the standard Reynolds-Averaged Navier-Stokes and
more advanced Large Eddy Simulations. Several exam
have shown the efficacy of the IB technique in simulati
complex, turbulent flows using simple Cartesian-li
meshes.

Although the discussed examples encourage the use o
present approach for complex, industrially relevant appli
tions, there are a number of points that still need a deta
investigation.

For example, the local grid refinement technique d
scribed in Section 3.4 was shown to work very well in com

re-
Fig. 19 Streamwise velocity profiles in the wake for the squa
back configuration. Symbols: Experiments@62#; Dotted line: LES at
Re520,000; Solid line: LES at Re5100,000.
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bination with RANS modeling, while nothing is know
about its application to LES simulations. This is a cruc
point since the need for grid resolution close to solid walls
the main limitation to the application of LES to high Re
nolds flows. This observation shifts the focus on the rec
wall models for LES described by Balaras and Benocci@65#,
Balaraset al @66#, Cabot @67# and Cabot and Moin@68#
which have been successfully used with body fitted mes
@69,70#, while they have never been integrated in Immers
Boundary solvers. We believe that a combination of L
turbulence modeling with the appropriate wall treatment a
the Immersed Boundary approach~possibly with a local grid
refinement! would make LES an industrial production too
similarly to the present RANS simulations.
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