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ABSTRACT
In the past decade a large degree of advancement has been

made in CFD labs worldwide, towards the development of Im-
mersed Boundary (IB) CFD methods. The IB method belongs
to a new class of numerical methods sometime called mesh-less
methods, as no standard meshes that conform to the geometry (or
body) need to be generated. The discrete points where the calcu-
lation is performed can be freely distributed in the computational
domain without great concern for the position of the geometry.
The geometry is immersed into a Cartesian grid and the method-
ology accounts for the effects of the presence of the body in the
flow field. The IB method therefore frees up the user from the
time consuming and often complicated need for meshing. Plenty
of proofs of accuracy and validations are presented yearly at the
most prestigious CFD conferences and are available on the in-
ternet. Oil and Gas CFD applications are concerned with a va-
riety of internal flow problems. Most of those problems present
geometrical complexities, valves for instance, that make a stan-
dard body-fitted generation of good quality meshes almost an
impossible task. And bad inputs, such as low quality meshes, al-
ways determine bad outputs, low quality results. In this paper the
KARALIT CFD code based on a class of IB methodology akin to
ghost cell methods, is applied to a class of applications encoun-
tered often in oil and gas plants, namely a pipeline connecting
an arbitrary number of valves, or other devices. While complex
valves and devices do make the standard body-fitted approach ex-
tremely tedious and difficult, on the other side pipelines are nat-
urally and easily modeled using standard body-fitted cylindrical
meshes. The hybrid CFD approach presented will show an au-
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tomatic implementation of mixed type domain: pipes cylindrical
body-fitted meshes are automatically generated by the method
and automatically connected to the devices which are treated
with the IB method. Examples of lines with arbitrary number of
devices will be shown. Result and key performance parameters
are provided from the IB CFD calculations and key conclusions
about the line characteristic are drawn.

NOMENCLATURE
Cp Specific heat
E Total energy
Pr Prandtl number
T Temperature
d Distance from the closest surface
e Internal specific energy
k Turbulent kinetic energy
p Pressure
t Time
ui Velocity components
γ Ratio of specific heats
µ Dynamic viscosity
ν Kinematic viscosity
Ωi j Rotation tensor
ρ Density
τ ji Viscous stress tensor
(̃) Density weighted time-average of quantity
(̄) Time average of quantity
()“ Fluctuating quantity
()t Turbulent quantity
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INTRODUCTION
Valves used in the Oil and Gas industries can have rele-

vant dimensions, with typical diameters of some 2 [m] or above.
Those valves operate at nominal and off-design conditions char-
acterized by mass flow rate values of tens of [kg/s] of gas, which
make unpractical and far too expansive running any experimen-
tal test. Even though semi-empirical methods are still used in
valves’ design, the diffusion of Computational Fluid Dynamics
(CFD) in recent years and the market’s and regulators’ require-
ment of numerical validations, resulted in a wider use of numer-
ical simulations of valves’ lines. The very first step of any CFD
study is the discretization of the domain into computational cells,
over which the set of equations that describes the dynamics of
fluids are integrated. This phase of the process is known as grid
generation and for complicated geometries like valves’, it can
be really time consuming. Moreover, this activity usually re-
quires highly skilled operators, who are not typically available in
this kind of industry. In the past decade the Immersed Boundary
Method has started coming out from the academic environment
into which has been confined, and has been used successfully on
a number of applications of real industrial interest, ranging from
automotive to bio-medical ones. The most apparent advantage of
this class of methods over traditional CFD tools is that the above
mentioned meshing process is almost entirely skipped, resulting
in a great saving in the overall simulation cost.

The present paper deals with the application of a hybrid IB
method to a real case of industrial interest. Valves are inserted
into a pipe line to ensure that a desired pressure drop is realized
along the line. As the insertion of a valve into a line perturbs the
flow downstream the valve itself, it is a commonly used guide-
line to leave a proper distance (usually several diameters) in be-
tween two consecutive valves. Sometimes, because of a partic-
ular plant’s layout, it is not possible to satisfy this best practice
requirement. It becomes then interesting to understand the impli-
cation that such a non standard layout has on the flow field inside
the piping and on the system at large.

In the first part of the paper a brief historical review of the
several kinds of IB methods is presented, together with a sum-
mary of the equations which are to be solved. Then a particular
type of IB method, the Ghost Cell Method, is presented, outlin-
ing the logical steps in which the method articulates. Finally,
results obtained on the above mentioned test case are presented
and some conclusions are driven.

NUMERICAL METHOD
The code KARALIT CFD is based upon the Ghost Cells

method, which belongs to the more general class of IB meth-
ods. The idea behind this class of methods is the decoupling
between the actual geometry of the fluid domain and the under-
lying grid which is used for the integration of the flow dynamics
equations. The main advantage of this approach is that simple

regular meshes (e.g. Cartesian) can be used, thus retaining all
the ease and efficiency of the numerical methods developed in
that framework. The effect on the flow field of a stationary or
moving boundary is accounted for by the introduction of a dis-
tribution of fictitious forcing terms in the governing equations,
such that the correct flow boundary conditions on solid bound-
aries can be assigned. The first example of this methodology can
be found in Vieceli [1]. His original idea was to consider the
fluid-boundary interface as a free-surface and to impose there
pressure boundary conditions so that fluid particles could move
only along the tangent to the boundary line. The method was
generalized in a successive paper [2] to include the possibility
of walls either moving with a prescribed law or moving as a
consequence of the forces exerted by the fluid on the surface.
The method has achieved a certain degree of popularity during
the seventies, when Peskin [3, 4] successfully simulated a two-
dimensional stream of blood inside a hearth mitral-valve with
a very low Reynolds number. The first three-dimensional heart
flows simulations that included also the contractile and elastic
nature of the boundary were successively carried out by Peskin
himself [5] and by McQueen and Peskin [6, 7]. The first appli-
cations of the method to problems with an immersed, solid and
undeformable surface are found in Basdevant and Sadourny [8],
Briscolini and Santangelo [9], and Goldstein et al. [10]. Up to
that point the method was successfully applied to simple geome-
tries and to laminar flows.

The first examples of application of the method to com-
plex problems of industrial and biologic relevance can be found
in Fadlun et al. [11] where the flow inside an internal combus-
tion piston/cylinder assembly is investigated; in Balaras [12] the
fully developed turbulent flow in a plane channel with a wavy
wall is considered; Majumdar et al. [13] study the laminar flow
around a semi-circular cylinder at Reynolds number of 150, as
well as the laminar flow past a two-dimensional bump and the
fully developed turbulent flow in a plane two-dimensional chan-
nel; Tseng and Ferziger [14] apply the methodology to the study
of geophysical flows over a three-dimensional bump, whereas
Iaccarino [15] investigates several kind of flows, namely, the flow
in a wavy channel, the flow over a turbine blade, the flow in a
rib-roughened serpentine, the flow around a pick-up truck, and
finally, the flow around a Ferrari F50 overcoming a Porsche 911;
Dadone and Grossman [16, 17] focus their attention on several
flows of aerospace interest, such as the transonic flow around a
NACA 0012 airfoil, the flow over a bi-NACA configuration and
the transonic flow over the ONERA M6 wing. Poncet [18] sim-
ulates three-dimensional flows around an aircraft model and a
bridge. Borazjania et al. [19] carry out the simulation of the fluid
structure interaction with complex 3D rigid bodies. In particu-
lar, the vortex induced vibration of elastically mounted cylinders
and the flow through a bi-leaflet mechanical heart valve at phys-
iologic conditions are simulated.

The method used in the present work is known as Ghost
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Cells method. In order to inform the flow field of the presence of
an immersed solid body, the system of the fluid dynamics equa-
tions must be completed with an extra term, usually named a
forcing term. It is demonstrated [16] that this extra forcing term
reduces to the imposition of proper boundary conditions. This is
particularly appealing because no modification to the equations
has to be introduced and the same numerical methods that are
traditionally used to integrate the Navier-Stokes equations still
hold valid.

Governing Equations
The equations governing the motion of a turbulent flow of a

compressible and viscous fluid are the so called Favre-averaged
Navier-Stokes equations. They represent conservation laws of
mass, momentum and energy. If neglecting body forces, these
equations can be written in Cartesian coordinates as:

∂ ρ̄

∂ t
+

∂

∂x j
(ρ̄ ũ j) = 0 (1)

∂ (ρ̄ ũi)
∂ t

+
∂

∂x j

[
ρ̄ ũ jũi + p̄δi j− τ̃ jitot

]
= 0 (2)

∂ (ρ̄Ẽ)
∂ t

+
∂

∂x j

[
ρ̄ ũ jẼ + ũ j p̄+ q̃ jtot − ũiτ̃i jtot

]
= 0 (3)

where Ẽ is the total energy per unit mass:

Ẽ = ẽ+
ũkũk

2
+ k (4)

where k is the turbulent kinetic energy, which is defined as:

k ≡
ũ“

ku“
k

2
(5)

and

τ̃i j ≡ µ

(
∂ ũi

∂x j
+

∂ ũ j

∂xi
− 2

3
∂ ũk

∂xk
δi j

)
(6)

q̃ j ≡−Cp
µ

Pr
∂ T̃
∂x j

(7)

being q̃ j the heat flux components.
The above formulation is strictly valid for compressible

flows. Its extension to the incompressible regime is achieved
via preconditioning [20]. Numerical fluxes and source terms are
multiplied by a preconditioning matrix P. The Navier-Stokes
system can be written in compact vector form as:

∂Q
∂ t

+P
(

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂ z

)
+P

(
∂Gx

∂x
+

∂Gy

∂y
+

∂Gz

∂ z

)
= PS

(8)
where

−→
F and

−→
G are the inviscid and viscous flux vectors

and S is the source term array. The preconditioning matrix is
given by P = MM−1

m . M represents the Jacobian matrix of the
vector of conservative variables Q

(
ρ,ρ
−→
V ,ρE

)
with respect to

the vector of the viscous-primitive variables Qv

(
p,
−→
V ,T

)
. Mm

represents a modified version of M. No modification brings back
the original non-preconditioned system (P = I).

The turbulent eddy viscosity µt is obtained from a turbu-
lence model. The one equation Spalart and Allmaras model [21]
has been used throughout all simulations. The model formulation
in compressible form writes as:

∂ ν̃

∂ t
+

∂

∂x j
(ν̃u j) =

Cb1 [1− ft2] S̃ν̃ +
1
σ

{
5· [(ν + ν̃)5 ν̃ ]+Cb2 |5ν |2

}
−[

Cw1 fw−
Cb1

κ2 ft2

](
ν̃

d

)2

+ ft14U2 (9)

S̃≡ S +
ν̃

κ2d2 fv2 fv2 = 1− χ

1+ χ fv1
(10)

where:

S≡
√

2Ωi jΩi j Ωi j ≡
1
2

(
∂ui

∂x j
−

∂u j

∂x j

)
(11)

Ωi j being the strain rate tensor.

fw = g
[

1+C6
w3

g6 +C6
w3

] 1
6

,g = r +Cw2

(
r6− r

)
,r ≡ ν̃

S̃κ2d2
(12)
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ft1 = Ct1g exp
(
−Ct2

ω2
t

4U2

[
d2 +g2d2]) (13)

ft2 = Ct3exp
(
−Ct4χ

2) (14)

For the wall boundary condition to be satisfied, µt has to be
equal to 0 at solid walls. The eddy-viscosity is:

νt = ν̃ fv1, µt = ρν̃ fv1 (15)

fv1 =
χ3

χ3 +C3
v1

, χ =
ν̃

ν
= κy+ (16)

In the Spalart-Allmaras model, the correct near wall behavior of
νt is ensured by the introduction of fv1, which is a function of the
non dimensional wall distance y+. Function fv1 is such that for
y+ = 0, fv1 = 0 and for high values of y+, fv1 = 1, which satisfies
νt = ν̃ outside the boundary layer.

The model’s constants are [21]:

σ =
2
3
, Cb1 = 0.1355, Cb2 = 0.622, κ = 0.41

Cw1 =
Cb1

κ2 +
(1+Cb2)

σ
, Cw2 = 0.3, Cw3 = 2.0, Cv1 = 7.1

Ct1 = 1.0, Ct2 = 2.0, Ct3 = 1.2, Ct4 = 0.5 (17)

The Ghost Cells Method
As it has been stated above the Ghost Cell method reduces

into imposing proper boundary conditions to take into account
the existence of a solid body inside the Cartesian grid that repre-
sents the computational domain. Following the formulation pro-
posed by Dadone and Grossman [16, 22] and with reference to
Fig. 1, this can be accomplished by the following logical steps:

1. The body’s geometry is provided in some CAD output form.
In the case of KARALIT CFD the expected input file is a
triangulated surface in stereo-lithography format (STL).

2. The body, which is shown in gray color in Fig. 1, is im-
mersed into a Cartesian grid, which is completely indepen-
dent of the body itself (non conformal to the body surface
definition).

3. The grid’s cells are labeled based on the position of their
centers with respect to the body. With reference to Fig. 1,
cells are classified as: fully fluid cell (FC) when the cell falls
entirely inside the fluid region; fully solid cell (SC) when the

cell falls entirely inside the body; boundary cell (BC) when
the cell is cut by the body but its center is on the fluid side;
ghost cell (GC) when the cell is cut by the body but its center
is on the solid side. For a second order method it is usually
necessary to identify two rows of ghost cells. The fully solid
cells do not enter the computation and are neglected by the
method.

4. The position of each ghost cell is reflected into the fluid re-
gion by mirroring the cell along the normal to the body sur-
face passing through the cell center.

5. All flow variables are reconstructed at each of those mirror
points (MP) via an interpolation procedure which involves
a given number of fluid cells surrounding the mirror point
itself.

6. The computed variables at mirror points are reflected back
to the original ghost cells and are used to enforce the desired
boundary conditions (e.g. no-slip condition for velocity at
walls).

Once points 1 to 6 above have been completed, the same nu-
merical schemes which are used to integrate the Navier-Stokes
equation on body-conformal meshes can be applied. A second
order Total Variation Diminishing (TVD) Roe’s flux splitting
method [20] has been used to integrate the system in space and
an implicit method has been applied to advance solution in time.

In order to reduce the overall number of computational
cells, the software automatically generate a cylindrical body-
conformal mesh inside the pipe elements connecting the valves.
The use of a Cartesian mesh on those cylindrical line elements
would in fact result in an increased number of cells and therefore
computational time, without giving any advantage due to their
simple geometrical shape. In this sense the approach is to be
considered hybrid. At the interface between the Cartesian and
cylindrical meshes, an interpolation procedure is applied. The
two grids are displayed in Fig. 2.

TEST CASE
The goal of the present study is to assess the performance

of three different assemblies of a combination of three valves,
whose actual geometrical definition has been provided by a com-
pany operating in the sector. The valves, whose common diame-
ter is 1.75 [m], are shown in the Fig. 3. Element E1 is the assem-
bly of a Flue Gas valve and a Butterfly valve. Elements E2 and
E3 are both Butterfly valves, which differ for their spatial orien-
tation. Discs of all Butterfly valves are orientated at 45◦ respect
to the center-line. Element E3 has been obtained by rotating el-
ement E2 by 90◦ around the center-line so that the rotation axes
of the discs are now placed on orthogonal planes. Elements E1,
E2 and E3 have been assembled into three different line configu-
rations, which are illustrated in Fig. 4. Configurations differ for
the length of the pipe which connects the elements. Two pipes
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FIGURE 1. CLASSIFICATION OF COMPUTATIONAL CELLS
OVER THE CARTESIAN GRID. THE GRAY COLOR REPRESENTS
THE SOLID SIDE.

FIGURE 2. THE HYBRID CYLINDRICAL BODY-
CONFORMAL/CARTESIAN MESH; INTERPOLATION IS USED
TO TRANSFER INFORMATION BETWEEN GRIDS.

have been used for the present study, the first having a length of
about 6 valve diameter (long pipe) and the second one of about 1
valve diameter (short pipe). Configuration C1 uses the long pipe
to connect elements E1 and E2. Configuration C2 uses the short

FIGURE 3. THE THREE ELEMENTS (E1, E2, E3) USED
THROUGHOUT THE SIMULATIONS.

FIGURE 4. THE THREE ASSEMBLY CONFIGURATIONS (C1,
C2, C3) USED THROUGHOUT THE SIMULATIONS.

pipe in between elements E1 and E2, whereas configuration C3
uses the short pipe in between elements E1 and E3.

Aim of the simulation is to provide an assessment of the
overall line performance (pressure drop) as well as of the influ-
ence of the pipe’s length over the flow field structure inside the
line. The problem is of real industrial relevance as sometimes
in actual Oil and Gas plants’ layouts it is not possible to fit pipes
long enough in between line elements to meet the theoretical con-
ditions for the operation of the line.

Simulation Set-up
The three configurations have been simulated by using the

”Valve Line App” which is available in the CFD code KARALIT
CFD. As the code is based upon an IB method, no meshing is
required. The geometrical description of each line element is
imported in STL format and the software takes care of automat-
ically generating the pipes according to the prescriptions given
by the user. Valves are immersed into a Cartesian grid, whereas
a body conformal grid is created by the software on the pipes.
An example of the mesh is given in Fig. 5.
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FIGURE 5. VALVE LINE RENDERING AND GRID. A CILINDRI-
CAL BODY CONFORMAL GRID IS CREATED OVER THE PIPES
(LEFT); VALVES ARE IMMERSED INTO A CARTESIAN GRID
(RIGHT).

Steady state simulations have been carried out for a turbulent
compressible flow. An implicit time advancing scheme has been
used throughout the simulations. The CFL (Courant–Friedrichs–
Lewy) number [23] has been set to be 100 for configuration C1
and 10 for configurations C2 and C3. A second-order accu-
rate symmetric TVD scheme has been used for space discretiza-
tion. No-slip conditions have been applied to all solid walls. A
mass flow rate of 69. 024 [kg/ s] and a temperature of 983. 15 [K]
have been imposed at the line inlet, whereas a uniform pressure
value of p = 109725 [Pa] has been set as outlet condition. The
Reynolds number based on the inlet velocity and pipe diameter
is approximately 2. 8 × 106, therefore the flow is to be considered
fully turbulent.

Turbulence has been taken into account by using the Spalart-
Allmaras model, with an inlet value of the resolved turbulent
eddy viscosity equal to 1. 0E�04 [m2 / s]. The evolving fluid is
a mixture whose main components are Hydrogen, Ethane and
Methane that can be regarded to be an ideal gas with a density
equal to 0. 84 [kg/ m3].

RESULTS AND DISCUSSION
In order to assess the grid independence of the computed

results, simulation of configuration C2 has been carried out on
three different grid levels. Table 1 reports a summary of grid
sizes and computed values for the pressure drop between inlet
and outlet line sections. As the variation of the computed pres-

TABLE 1. GRID SENSITIVITY ANALYSIS.

Grid Total number of cells � p [kPa] Variation [%]

1 272000 156 -

2 1550000 130 16.7

3 5000000 129 0.7

FIGURE 6. CONVERGENCE HISTORY OF NORMALIZED Z-
MOMENTUM RESIDUAL.

sure drop value � p stays inside a 5. 0% difference range while
moving from grid 2 to grid 3, the grid 2 has been chosen for all
simulations.

It has been estimated a posteriori that y+ at the first grid node
is in the range of [4;370] in grid 2 and [1;290] in grid 3.

Figure 6 shows the numerical convergence history of the
normalized z-momentum residual (along the pipe line axis). A
further assessment of having reached a fully converged solution
is given by Figs. 7 and 8 which represent the solution history of
the mass flow rate and of the average pressure values inside the
pipes. The absence of periodic oscillations in the convergence
history indicates that the average flow is steady in nature and that
the flow filed configuration is not time dependent.

Table 2 reports the computed values of the pressure drop.
The expected value, as calculated using semi-empirical 1-D for-
mulas for both the Butterfly valve ( [24]) and Flue Gas valve
is of about 125 [kPa]. Formulas cannot be reported herein as
they are subject to copyright issues enforced by the Process Li-
censor. Figures 9 and 10 show relative pressure profiles along
the assembly center-line for the three configurations. While Tab.
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FIGURE 7. CONVERGENCE HISTORY OF THE MASS FLOW
RATE INSIDE THE THREE PIPES.

FIGURE 8. CONVERGENCE HISTORY OF AVERAGE RELA-
TIVE PRESSURE INSIDE THE THREE PIPES.

2 shows that the overall pressure drop does not change signifi-
cantly in all simulated cases, a few comments can be done on the
pressure distribution inside the three different assemblies. Com-
parison of Figs. 9 and 10 shows that there is a substantially equal
pressure drop through elements E1 and E2. Some differences
can be pointed out for the pressure distribution inside the pipe
in between those elements. Particularly, pressure seems to reach
a plateau inside the long pipe of configuration C1, whereas it
shows a steep slope inside the short pipe of configurations C2

TABLE 2. COMPUTED PRESSURE DROP

Configuration � p[kPa]

C1 132

C2 130

C3 130

FIGURE 9. RELATIVE PRESSURE ALONG THE VALVE LINE’S
AXIS (CONFIGURATION 1).

and C3. This can possibly be an indication of a more chaotic
behavior of the fluid inside the shorter pipe compared to what
happens inside the longer one. This phenomenon will be further
investigated later on while discussing the flow patterns inside the
assemblies. Analysis of the same Fig. 10 shows how the use
of element E3 instead of element E2 in the short pipe configu-
ration does not produce any significant change into the pressure
distribution along the center-line of the assembly.

Figures 11, 12 and 13 show the flow’s streamlines on two
orthogonal meridian planes and on relevant cross sections along
the pipe. The existence of two stationary vortexes can be noticed
in Fig. 11. Position of those vortexes does not vary in time and
their combined action results into the creation of a fluid nozzle
whose throat section forces the fluid to accelerate in the first part
of the pipe and then to recover its original pressure level in the
diverging part of the fluid nozzle. This positive pressure gradient
is shown also in the above mentioned Fig. 9, where it can be
seen that along the pipe’s axis pressure slightly increases from its
value at the downstream element E1 until the end of the pipe. The
smooth pressure distribution results from an ordered behavior of
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FIGURE 10. RELATIVE PRESSURE ALONG THE VALVE
LINE’S AXIS (CONFIGURATIONS 2 AND 3).

the fluid inside the long pipe. Flow patterns on the cross sections
shown on the right hand side of Fig. 11, suggest the absence of
vorticity on planes orthogonal to the pipe axis. This is a further
indication of a well established and ordered flow regime.

Figures 12 and 13 allow to state that the flow inside config-
urations C2 and C3 behaves substantially in the same way. A
stationary system of two vortexes exists on both meridian planes
and those vortexes show no symmetry with respect to the pipe
axis. Their position and intensity appear to be almost the same
for both configurations. Exam of Figs. 12 and 13 shows that
a sort of fluid nozzle also exists, but its throat cross section di-
mension is smaller than that that characterizes configuration C1,
namely about 0. 73 [m] versus about 0. 78 [m]. Moreover, this noz-
zle appears to be slightly angled with respect to the axial direc-
tion. A somewhat more noticeable difference can be evidenced
on the cross sections A-A which have been taken at the same
axial position. A system of three vortexes exists on both configu-
rations but the intensity of those in the upper part of section A-A
appears to be higher in configuration C3 than in configuration
C2. The opposite holds true for the smaller vortex in the lower
part of the same section.

Figure 14 illustrates the Mach number iso-line distribution
on the same meridian plane for each of the three configurations.
Even though the Mach number is rather low (0. 053) at the inlet,
it reaches its maximum values of about 0. 78 and 0. 80 for con-
figuration C1 and configurations C2 and C3, respectively, in the
lower part of the butterfly disc of element E1. Rather high val-
ues are also found downstream the circumferential by-pass holes.
This wide range of Mach number inside the flow field justifies
the adoption of a compressible formulation for solving the fluid
dynamics equations.

FIGURE 11. STREAMLINES (CONFIGURATION C1: ELE-
MENTS E1, E2 CONNECTED BY LONG PIPE).

FIGURE 12. STREAMLINES (CONFIGURATION C2: ELE-
MENTS E1, E2 CONNECTED BY SHORT PIPE).

Figure 15 shows the temperature iso-line distribution on
the same pipe’s cross sections A-A already used in Figs. 11,
12 and 13. The considered temperature range is the same
(960� 970 [K]) for configurations C1 and C2, but the colder
flow core center results closer to the wall in configuration C1
than in configuration C2. This is due to the absence of vorticity
on the left hand side of the meridian plane, as visible in Fig. 11.
Although the temperature range is the same for the two cases,
temperature distribution results globally more uniform in config-
uration C1, with a less steep temperature gradient. This is evi-
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FIGURE 13. STREAMLINES (CONFIGURATION C3: ELE-
MENTS E1, E3 CONNECTED BY SHORT PIPE)

FIGURE 14. MACH NUMBER CONTOUR PLOT (CONFIGURA-
TIONS C1, C2 AND C3)

denced by a more spread iso-lines distribution. Comparison of
configurations C2 and C3 shows that the colder fluid core posi-
tion is almost the same, but the maximum temperature value in
configuration C3 results to be reduced by some 5 [K]. This can
be the effect of a more intense mixing induced by the stronger
vorticity already discussed in Fig. 13.

CONCLUSIONS
A hybrid IB method has been applied to the simulation of a

realistic Oil and Gas case. The study has allowed for a better un-
derstanding of what happens inside the system when the length
of the pipe connecting two consecutive valves is shortened with
respect to what the standard best practice would suggest. The
methodology makes possible to easily change the relative posi-
tion of the valves’ line elements with no particular effort and

FIGURE 15. TEMPERATURE ISO-LINES ON THE PIPE’S
CROSS SECTION AT MAXIMUM VORTICITY.

without any need of meshing. It has been seen that the recirculat-
ing flow inside the pipe modifies as the pipe length is reduced, in-
creasing the overall level of disorder in the flow and resulting in a
less uniform distribution of velocity and temperature. Moreover,
the angular position of the third line element has been changed
in order to assess the eventual influence of a different spatial po-
sition of the Butterfly valve’s disc on the flow behavior. It has
been found that the only visible influence is registered on tem-
perature’s distribution and peak value. In all cases, the overall
pressure drop remains virtually unchanged and similar to what
was expected from the use of semi-empirical one-dimensional
formulas.
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