

KARALIT CFD FOR AUTOMOTIVE EXTERNAL AERODYNAMIC.

CASE DESCRIPTION: CAR BODY EXTERNAL AERODYNAMICS.

This model was created approximately 10 years ago in the Daimler-Benz research department. It was designed for two purposes: to investigate if a body with very low drag could be created, and to test CFD codes on a neutral car body not related to an actual Mercedes.

The model includes a square rear back, smooth surfaces, boat tailing, and an underbody diffuser. There is no pressure-induced boundary layer separationon.

FAST SETUP WITH NO PRE-MESHING.

Using the power of the Immersed Boundary (IB) method in KARALIT, the car body model geometry (STL format) is directly immersed into a background Cartesian grid. Preprocessing takes just seconds, as the user does not have to deal with time-consuming mesh generation.

Per l	Ground-confined external flow layout Surface Mesh Fluid Block	i sum.
	Number of blocks 8	
	Block 1 split into 1 👻 blocks Fit	
d-confined external flo 🗸 Setup	lower left corner dimensions nodes	
Meshes	x -0.5 width 2.0 ni 51 🗘	
AGGeoMagi	y 0.0 height 1.0 rj 51 🗘 🗆	
	z 0.0 depth 1.0 nk 51 🖕	
View + - View	delta x: 0.04 grid spacing delta y: 0.02 delta z: 0.02	
Blocks number: 19	Outer blocks streamwise crosswise	
Cores 1	boundary distance 6.0 boundary distance 3.0	
Blocks summary Setup	stretching factor 1.3 stretching factor 1.3	
View Simulation Setup	wall stretching	
	wall grid spacing 0.005 boundary distance 0.1	
	stretching factor 0.0	
	Ground boundary conditions	
Preview	type 211-diabatic wall 🗸	
_IT Close Save	Wall X-velocity Wall Y-velocity Heat-flux	

ayout Crou urfaces SMO_car_rei uids

EASY SETUP THROUGH THE USE OF APPS.

Case setup is further simplified by use of a KARALIT customized app, in this case the Ground-Confined External Flow app. Only a few values are needed to set up boundary conditions.

This highly parametric approach enables engineers to set up calculations in a straightforward and easy manner within the natural design workflow.

RESULTS VISUALIZATION.

The results of simulations can be quickly visualized with popular software such as Tecplot and EnSight, activated directly from within KARALIT CFD at the touch of a button.

Flow streamlines and contours of U- velocity, depicting flow separation at the rear of the model on a symmetry plane.

Pressure distribution at symmetry plane.

Cp along x direction of model.

Immersed Boundary (IB) method for:

- Saves up to 99% in user time by eliminating the need for pre-meshing
- Faster turnaround time to reach a solution
- Reduces manual preprocessing work
- Increases accuracy by solving on rectangular grids
- Focuses engineering resources on analysis, not preprocessing

Customized apps:

- Fast case setup
- Minimum effort to set up complex CFD simulations
- Easy setup for parametric analyses
- Ideal simulation tool for moving objects
- Ultimate engineering "what-if" design tool

Value-based pricing:

- Pay nothing extra to add hardware
- Unlimited parallel processing
- All inclusive
- Easy budgeting

Contact your sales office or **sales@karalit.com Headquarter:** Pula (CA), Italy - Tel: +39 070 278202 - info@karalit.com - **www.karalit.com**

Italy Office: Milan Tel: +39 02 87188454 **UK Office: London** Tel: +44 (0) 8006126912 **Germany Office: Frankfurt** Tel: +49 (69) 20163578 **USA** Tel: +1 855 KARALIT (527 2548)